Research Project Management Highlights and Impacts

Bruce Chehroudi, PhD

Advanced Technology Consultants www.advtechconsultants.com 4 Hidden Crest Way Laguna Niguel, CA 92677

Presentation to

Sandia National Laboratory Combustion Research Facility Livermore, California

April 22, 2013

A partial list of research activities

- Liquid fuel spray and DISC engine
- Swirl-stabilized combustor (gas turbine engine)
- Interacting-jets/sprays: Simultaneous reduction of soot & NOx emissions
- Supercritical combustion in cryogenic rockets
- Combustion instability in liquid rocket engines
- Nanotechnology, optics, and chemical reaction
- Conclusions

Liquid Fuel Spray: DISC Engine

Objectives

- Develop diagnostics in dense spray
- Characterize dense spray region
- Length and shape of the dense core
- Database for modeling and simulation

Organizational Impact

- Maintained leading position in the field
- Secured follow-up funding
- Visibility in the national and international community
- Role model in research excellence
- Close collaboration between modeling/simulation and experimental teams in the same building (laboratory)

Princeton University high-pressure spray facility.

Liquid Fuel Spray: DISC Engine

Key Technical Results & Impacts

- Winner of the Arch T. Colwell Merit Award from SAE (only to top 1% of all publications each year)
- Innovative electrical conductivity approach for both length and shape of the dense-spray region
- One of the two known such measurements in the world at the time (the other: Hiroyasu et al., Japan)
- Modeling and simulation code validation (KIVA)
- Core length proportional to square root of density ratio
- Previous measurements overestimated the length
- Theoretical and experimental results in good agreement
- Used for engineering design purposes
- Path from fundamental research to applications

Chehroudi et al. Equation

$$L_{core} / d_{jet} = [\beta_0 + c' (1 - \beta_0 / c' + 9 (\beta_0 / c')^2 / 8)^{-1}] (\rho_l / \rho_g)^{1/2}$$

Measured total spray electrical resistance versus axial distance for different injector designs. Chehroudi et al. (1985).

Single-hole injector producing a dense spray at different chamber pressures. Chehroudi et al. (1985).

B. Chehroudi, PhD

Swirl-Stabilized Combustor Gas Turbine Engine

Objectives

- Designed and built facility from the ground up
- Mechanism of swirl stabilization
- Pollutants formation
- Spray characterization under both reacting and nonreacting flows
- Experimental data for modeling and simulation
- Visualization & laser diagnostics

Organizational Impact

- Decorated the department's only advertising brochure: an effective marketing impact
- Attracted additional funding
- Used for research and education
- Attracted other colleagues for collaborative research and proposals
- 1 PhD and 3 MS

Swirl-stabilized combustion chamber simulating gas turbine combustion chamber

Spray flame stabilized by swirl air using a specially-designed swirler

Swirl-Stabilized Combustor: Gas Turbine Engine

Key Technical Results & Impacts

- CRC Handbook of Fluid Dynamics as significant example of applied engineering research done on the subject with many commercial applications (W. Bachalo)
- Journal of Fluids Engineering: Data Bank Contribution
- Effects of reacting flow on spray characteristics
- One of the earliest data set in the literature
- Recirculation zones and their interactions
- Stability zone characterization
- Anatomical features were named and distinguished under both cold and reacting flows
- Design guidelines were proposed

Structure of the swirl-stabilized sprays under reacting condition

Offset plots of the mean axial drop velocity with (solid) and without (hollow) combustion at six different axial locations. Dashed curves show mean temperature profiles. Mean drop radial velocities were measured

Offset plots of the SMD with (solid) and without (hollow) combustion at six different axial locations. Dashed curves show mean temperature profiles.

Interacting-Jets/Sprays: Simultaneous soot & NOx reduction

Objective

- Feasibility of an innovative concept for simultaneous reduction of soot and NOx
- Innovation at the interface
- Fundamental understanding of the interacting sprays

Organizational Impact

- Enhanced visibility in innovative idea generation
- Advanced engine laboratory for both research and education
- Attracted funding from the industry (GM and Ford)
- Patent filed
- A number of publications
- Motivated other researchers in the world to explore similar strategy
- 2 PhD and 4 MS

Single-cylinder engine for interacting-sprays studies

Engine head design of the interacting-sprays combustion chamber for simultaneous soot and NOx reduction

Interacting-Jets/Sprays: Simultaneous soot & NOx reduction

Key Technical Results & Impacts

- The concept based on physical intuition has been proven
- Led to follow-up studies throughout the world
- Interacting-sprays concept appears to be complementary to other competing approaches
- Laser diagnostics including Exciplex method revealed the nature of the interaction
- Interaction at the right time and right place achieved the desired effects.
- Stronger interactions between the two injection pulses (i.e., spray/spray impingement) early within the ignition delay period was critical to reduction in smoke (or soot) formation.
- For effective NOx reduction the second injection pulse should start near the ignition delay period to lower local burned and burning gases temperatures

Simultaneous soot and NOx reduction potential of the interacting-sprays are shown

In-cylinder visualization of the interacting-spray injection system

Supercritical Combustion: Liquid Rocket

AVAILABE Advanced Technology THE AIR FORCE RELEASED LANDSTATION ERCC Raytheon

Objective

- Understand combustion under high pressures including supercritical conditions
- Fundamental understanding of cryogenic liquid propellant atomization
- Database for modeling and simulation

Organizational Impact

- Improved design tools
- Continued funding through AFOSR
- Earned one of the prestigious AF awards: the Star Team Status (implications: secured funding for 5 years no matter what)
- Built international reputation for the group
- Opened up national & international collaborations
- Expanded into another program: Combustion instability
- Enhanced sense of pride and teamwork
- NASA funding via AFRL, ATC, JPL joint proposal
- 1 PhD jointly with Penn State, 1 postdocs, 1 visiting faculty B. Chehroudi, PhD

Supercritical facility at AFRL

Raman scattering studies

Supercritical Combustion: Liquid Rocket

Key Technical Results & Impacts

- Outstanding Technical Publication Award
 - In recognition of performance and outstanding achievement to the Air Force Research Laboratory, Space & Missile Propulsion Division, 2002
- Best Technical Publication Award
 - For outstanding and lasting contributions to aeronautical and aerospace sciences, AIAA, 2000

First time Achievements

- Quantitatively demonstrated that jet growth rate (hence, mixing appetite) under supercritical conditions behaves like incompressible variable-density gaseous jets
- Consolidated jets, sprays, mixing layers data for up to 4 order of magnitude
- Fractal analysis of the supercritical jets
- A physics-based model
- Implications for modeling and simulations
- Methodology to reconcile results from Raman and shadowgraphs
- Raman data was used for temperature profiles

Growth rate of single jets as a tangent of the visual spreading angle versus the chamber-to-injectant density ratio. Data taken by Chehroudi are indicated by an asterisk (*) in the legend.

Combustion Instability: Liquid Rocket Engine

Objective

- Nature of the acoustic field / injector interaction
- Develop understanding under high pressures including supercritical conditions
- Data for modeling and simulation

Organizational Impact

- Led to continued funding by the AFOSR
- Contributed heavily towards formation of combustion stability program by the Air Force
- Established as one of the leading research groups in high pressure combustion instability
- Enhanced collaborations with university and industry
- Contributed towards next generation of combustion stability design tools
- 1 PhD jointly with UCLA, 1 postdoc, 1 visiting faculty

Supercritical facility for study of combustion instability in cryogenic liquid rocket engines

LOX Core

B. Chehroudi, PhD

Combustion Instability

Key Technical Results & Impacts

- Best Paper Award
 - Liquid Propulsion Subcommittee, Joint Army-Navy-NASA-Air Force(JANNAF)
- Marshall Award
 - Best publication of the year, ILASS_America
- A Unified Injector Sensitivity Theory for combustion instability was proposed
- Opened up a new perspective on the instability at supercritical pressures
- Theory is consistent with all available cold and reacting flow results

Liquid Rocket

Engine

Consecutive frames from high-speed movies for a coaxial injector similar to those used in Space Shuttle main engine with the acoustic driver off (rows 1, 3, and 5) and on (rows 2, 4, and 6) at ~ 3kHz.

Comparison of Chehroudi's cryogenic coaxial-jet dark-core length measurements with all other relevant core length data in the literature versus momentum flux ratio

Nanoscience, Optics, & Chemical Reaction

Objective

- Light-activated volumetrically-distributed ignition of gaseous and liquid sprays: A paradigm shift in ignition technology
- Explore potential for ignition-induced instability
- Understand photo-physics of the phenomenon
- Feasibility in applications of carbon nanotube, graphene, or other nanostructured materials for ignition/combustion

Organizational Impact

- The only group in the world harnessing the applications of this new phenomenon
- Led to active participation in the AFRL Nanoscience and Technology (NST) Strategic Technology Team (STT)
- Secured seed fund leading to a 5 year funding for the program through AFOSR/NST
- Created & managed multidisciplinary collaboration (university/government/ industry)
- 2 MS students (Purdue Univ & AF Academy) &1 postdoc

Basic and Applied Research Roadmap

Nanoscience, Optics, & Chemical Reaction

ATC

Advanced Technolog

Key Technical Results & Impacts

- Distributed ignition of a host of fuels in gas phase
- Distributed ignition of liquid fuel sprays
- Publicity by the New Scientist magazine
- Minimum ignition energy measured for the first time, being 40 times less than any competing method
- Light wavelength effect was of secondary importance (within visible and NIR range)
- Preliminary work on photoacoustic
- First principles, state of the art, density functional methods were used to understand the iron/oxygen interaction at the cluster level and see if O₂ faces a barrier as it approached Fe_n clusters.
- Potential application for the next generation of the highlyefficient and environmentally-clean HCCI engines
- Two patents filed at the USPTO
- True autoignition control in homogenous fuel/air mixtures

Paving the way towards Distributed Ignition of gaseous fuel-air mixture and liquid sprays

Effect of Pulse Duration on Dry SWCNTs'

Iron Cluster and Its Oxidation

• Electronic and magnetic properties of the neutral and anionic Fe _n clusters containing up to eight iron atoms	1 1 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	9- 9
 Examined the ground state geometries as well as other structures that are close in energy to the ground state 	, S.S.		e: 22
• First principles, state of the art, density functional methods were used	- 8-	÷ 8	*
 The binding of O₂ changes with cluster size. 	4	× 2.	1.
 Does the O₂ molecule faces a barrier as it approaches Fe_n clusters? 	- 9		\$
 There is no barrier. 	~ 6		6 6
 Hence, it is believed that all the Fen clusters will 	0.0	00	* **
react with O_2 although with different energy of formations.	~ 8	8 💠 <	5 ×
	~ 18	a sila d	80 800
 To make connection with future experiments, the corresponding studies on anionic clusters were carried out. 	÷.	è 💠 d	ا∰ 🕏
	~ 28	3	合 静
Rhanna & Castleman	\$	288	

A great candidate for LDRD at Sandia

Conclusions

- Award-winning and trend-setting scientific contributions with a broad range of applications
- User-inspired and boundary-spanning basic research with a clear path to application
- Time-tested, sustained, high-quality, innovative research work
- Effective leadership, management, and teamwork
- Wide network in academia, industry, and government
- Multidisciplinary research activities
- Broad-spectrum of research management experience with diversity in scope and scale
- Multi-organizational collaborative research at the national and international levels
- An innovative, dependable, and visionary professional/leader with entrepreneurial skills, who envisions, develops, markets and improves methods/processes to achieve desired results within schedule and budget

B. Chehroudi, PhD