
Balancing of Rotating and Reciprocating Systems in Engine: 
 Basic Understanding (Part I) 

 
 
The main objective of this tutorial is to introduce basic requirements and concepts of balancing  piston/connecting-rod/crankshaft  
assembly in an engine.  In order  to be able to portray a coherent picture we need to introduce some simple tools used in statics and 
dynamics of objects.  The approach taken here is combination of algebraic and geometric presentation to maximize physical 
understanding.  But first, a review of some basic laws is in order. A three-dimensional system or object is in static equilibrium if  
summation of all external applied forces  and moments in each of the  three perpendicular X, Y, and Z directions are zero. Also, 
according to Newton's dynamic law, summation of all external applied forces  in each of the  X, Y, and  Z directions must be equal 
to the mass of the object multiplied by the X, Y, and Z components of  acceleration  of the center of mass, receptively. 
 
In   dynamic analysis of systems, it is customary  and convenient to convert a complex system to a more simplified version or 
model which is dynamically equivalent.   Consider a round disk   with an imbalance mass of "m"  due to inaccuracies in design or 
manufacturing. Point G is the center of mass of the combined system of disk with mass of M and the mass  m. Assuming perfect 
rigidity,  the entire real system can be  modeled  as a  mass of (M+m) located at the point G connected by a massless connecting 
rod to the bearing, as shown in Fig. 1.  Dynamic analysis of  the real system in Fig. 1 then proceeds equivalently as shown in Fig. 2 
by  finding the forces that are  transferred to the bearing.  In Fig. 2,  the  so-called method of free-body-diagram is used.  In this 
analysis we will not concern ourselves with such  issues as torsional and rotational resonances and  are only after the basic 
requirements of balancing.   
 
For rotational system, we  speak of static and dynamic balancing of a system.  Imagine a rotating system that has an imbalance 
mass  m2 at a distance of r2 from the center of rotation.  If this object is laid on a  horizontal knife-edge type support free to  move, 
it will rotate so as the imbalance mass m2 locates itself at the lowermost position due to gravity effects.  Technically, it will rotate 
until  the mass m2 is below the center of mass of the object.  Note that in this object, having the imbalance mass of m2, the 
geometric center and mass center (i.e. center of mass) are not the same. By static balancing, we are trying to make these two 
centers the same.  In this simple object, it is done by adding an extra mass m1 at the radius r1 such that the two centers  coincide. 
Mathematically this means that  m1 r1 = m2 r2 in order to satisfy the static equilibrium condition mentioned above.  The question 
here is whether the system will now be balanced dynamically ?  To answer this question we refer to Fig. 3.  Here, the same object 
that was statically balanced in Fig. 4 is arranged  with two side bearings and  rotated at a constant  angular speed of ω.  For 
dynamic balance we need,  first,  that F1 = F2 or  m1 r1 ω2 = m2 r2 ω2.  This leads to  the same  requirement for the static balancing 
above,  that is   m1 r1 = m2 r2 .  Hence, as far as the inertia forces are concerned the system is balanced. But, second,  since these 
two forces are not colinear, they produce a torque  "c" which is equal to  F1 a = F2 a.  This couple (or torque or moment) rotates 
due to shaft rotation and is called vibrational torque or couple.  Therefore, as it is, the system is not  dynamically balanced. A 
major conclusion here is that  if we have dynamic balance this means we do have a static balance as well;  but  the converse 
statement is not correct.  One excellent example  is balancing the automotive  tire on dynamic balancer devices. 
 
Perhaps an example makes it more clear. Figure 5 shows an example in which an imaginary shaft with two imbalance masses is to 
be  balanced dynamically by addition of two masses in the planes identified as  "0" and "3" at  given and known distances of r0 and 
r3 from the axis of the rotation.  We are after masses m0 and m3 and the angles at which they should be located for dynamic balance. 
Here, geometrical approach is selected although this can easily be done algebraically or automated by a computer program.   
Figure 6 shows details of the solution.  In dynamics, any  applied force can be conceptually transferred to any other location of the 
same object by addition (and application ) of an appropriate moment. Dynamically speaking, no effects will be introduced by such 
an undertaking and this is usually used as a solution strategy.  In Fig. 6 we have moved all forces  due to eccentric masses to plane 
“0” as shown.  The double-headed arrows indicate the applied moments and  follow the so-called right-hand-thumb rule. The 
solution methodology starts with the couple or moment diagram to find the value and orientation of the mass m3. From this 
moment diagram and knowing   c3 = (m3 r3  ω2) a3 ,  one can find the value of mass m3. To find the m0 we need to satisfy another 
condition of dynamic balancing which states that the vectorial sum of all  the applied forces must be equal to zero. Figure 7 shows 
both the moment and force diagrams to satisfy the two conditions of the dynamic balancing.  This completes our dynamic 
balancing of the example in Fig. 5.  We will continue this tutorial in  part II when we discuss  dynamic balancing of reciprocating 
systems such as piston/connecting-rod/crank-shaft assembly for a single and a multi-cylinder engines. 
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Balancing of Rotating and Reciprocating Systems in Engine: 
 Basic Understanding (Part II) 

 
 
In part I  of this series basics of  the static and dynamic balancing of rotating objects were discussed. In this part our focus is 
targeted at the reciprocating systems and in particular piston/connecting-rod/crank-shaft mechanism.  However, before details 
discussion of this subject, we need to  review some concepts in dynamics.  Two systems of bodies are said to be dynamically 
equivalent if their motions are the same under the same set of forces and moments.   This  is illustrated in Fig. 1 where a real  
object is idealized by its dynamically equivalent  system consisting of two masses m1  and m2  connected by a rigid and massless  
rod.   The concept of the equivalent idealized system is very useful in solving complex problems. Mathematically we need to 
satisfy the following equations in order to ensure dynamic equivalency: 
 
 

m1  +   m2  =  m (1), Mass of ideal system = Mass of the real object 
m1 a1   -   m2 b1   =  0 (2), Identify location of the center of mass for the  ideal object 
m1 a1

2  +  m2 b1
2  =  IG (3), Moment of inertia of  ideal system = Moment of inertia of real object 

 
Where IG  is the moment of inertia of the real object about the center of  mass and m1 , m2 , a1 , and b1 are the parameters of the 
idealized system to be determined by the above set of equations.  However, we have four unknowns (and m1 , m2 , a1 , and b1 ), 
two knowns ( m and IG), and three equations. Hence, one of the unknowns must be arbitrarily assumed.  
 
Consider a real (but frictionless and yet-unbalanced) reciprocating system that consists of a piston, connecting rod, and crank arm 
that is rotating at an angular velocity of ω. We also consider that the engine is not fired, hence only forces and moments due to the 
motion of the reciprocating system are in question here. Our approach in finding the unbalance forces and moments is to find the 
dynamic equivalent of the connecting rod and the crank arm in the first stage. Then we consider the forces and moments that arise 
as consequences of motions of these dynamic equivalences.  Figure 2 shows the first stage of the process to find a dynamic 
equivalence for the original real reciprocating system.  The points G2  and G3  are the locations of the center of mass for the real 
crank arm and connecting rod, respectively.  The forces applied to the bearing A due to the arm 2 can readily be calculated as it 
only has rotational motion. However, situation for the object 3 is quite different because of its combined rotational and transitional 
motions.   Using the above system of equations, one attempts to find the dynamic equivalent of the object 3 by selecting the 
distance "a1 = a" and finding other unknowns (m1, m2 , and b1 ) using the above system of equations.  It is not difficult to see that 
in general the solution gives the location of the mass m2 not at position B (i.e. b1 is not necessarily equal to b).  However, in 
practice b1 is very close to b.  Another way to approach this problem is to select positions of the two masses m1  and m2  to be at C 
and B,  respectively, and then use equations (1) and (2)  to find values of the m1  and m2.  In this method, however, the equation (3) 
is only approximately satisfied (m1 a1

2  +  m2 b1
2 ≅   IG). The ideal system is not then completely equivalent to the real connecting 

rod. As far as the inertia moments are concerned they are not equivalent between the idealized and the real systems but inertia 
forces are and this equivalency is of primary importance in a first-order approximate analysis.  This same treatment should also be 
applied to  the body 2  to find m3  and m4  and again  it is found that the inertia moments of the real and the idealized systems are 
not equivalent. But this is not  important for the crank shaft 2 as designers usually add "extra mass" (crank throw) to bring its 
center of mass  to the rotation axis at A,  see Fig. 2. 
 
Figure 3 shows  the ideal system for the real reciprocating system. Note that  there is no need to position mass m4  at location A 
because it does not move and the vibrational moments and forces are zero.  Also, as indicated, the rotating (centrifugal) force FB 
( = (m2 + m3)Rω2) can easily be neutralized  by proper design of the crank throw.  Therefore, the only forces of our concern are 
those as a result of the  motion of an idealized mass equal to  (m1 + mP) located at the piston position B. Here, mP is the mass of the 
original real piston.  To find these forces we need to calculate the acceleration of the point B and then multiply it by the (m1 + mP) 
according to the Newton's law. 
 
We take the  origin of the x-axis at the TDC and it is not difficult to show that : 
 

X = (L + R) - (R Cosθ + L Cosϕ) and  Sinϕ = (1/n) Sinθ , where  n=L/R. 
 
From  Cosϕ =  SQRT(1- sin2ϕ) = SQRT(1- (1/n2)Sin2θ) ≅1 - 0.5(1/n2)Sin2θ   we have 
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X ≅  (L + R) - RCosθ - L + L/2(1/n2)Sin2θ taking this good approximate relationship as an equality,  second time 
derivative of  the X gives the acceleration of the point B as: 
 
f = Rω2(Cosθ + 1/nCos2θ).  It is customary to define the primary reciprocating  (FP1)  and secondary reciprocating (FP2) 
forces as follows: 
 
FP1 = (m1 +mP) R ω2Cosθ  and  FP2 = (m1 +mP) (R ω2 /n) Cos2θ. 
 
Note that since in most designs n is  greater than one the FP2  is of secondary importance.  
 

The analysis shows that we have total of three forces, FB , FP1 , and FP2 acting on the system.  Note that the direction of the force 
FB changes but those of others are in the x direction always.  A simple computer program can give the  x and y components of the 
resultant force (i.e. FX and FY ) at any angular position of the crank arm θ. However, for clarity and visual effects a geometrical 
procedure is described in Fig. 4 in which resultant force (the vector ov) at an arbitrary crank angle θ is shown through a 
construction of three circles with the  radial separations as  illustrated.  Note that the resultant force is transmitted to the main 
bearing at point A. Systematic application of the procedure shown in Fig. 4 at all crank angles traces a curve such as case(a) shown 
in Fig. 5.  To reduce these applied forces on the main bearing,  in one approach, a mass equal to about  (m2+m3) + (1/2 to 
2/3)(m1+mP)  is added at radius R extending the crank arm  and at opposite the mass (m2+ m3) shown in Fig. 3. Case (b) in Fig. 5 
shows effects of addition of such a mass on the resultant force on the main bearing.  Substantial reduction of this forces is achieved 
in both x and y directions.  This completes basic methodology  for balancing a single reciprocating mechanism.  In  part III we 
discuss balancing methodology for multicylinder engines.  
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Balancing of Rotating and Reciprocating Systems in Engine: 
Basic Understanding (Part III) 

 
In part I and II of this series static and dynamic balancing  of rotating and reciprocating systems were discussed. For a 
reciprocating system, we learned that there were two reciprocating inertia forces. They were called primary and secondary  
forces  in accordance to their importance. The secondary inertia force is  lower in magnitude mainly  because of  the 
connecting rod length to crank arm ratio (L/R) being greater than a one.  At this point, the reader is well equipped to 
understand the extension  of what has been covered so far in  part I and II to multicylinder engines.  Here, as before, only 
the dynamic forces are considered and those imposed by the  cylinder gas pressure are not considered.  
 
In this tutorial, an example of a four cylinder engine is considered.  However, for different cases the reader is referred to 
other sources. A methodology is needed for such a balancing  exercise.  Consider a general n'   cylinder  inline engine as 
shown in Fig. 1.  As indicated in the part II, it is assumed that the rotating forces are balanced by a proper design of the 
crank throws.  Consider the case where all pistons and distances between  the neighboring ones are the same. We have 
seen in part II that the reciprocating inertia force  for each  piston-connecting-rod assembly is: 
 

2
r 1 1

r 1 p

i

F m R (Cos (1/ n)Cos2 )
Where n is the connecting rod tocrank arm ratio (L / R)shown in Fig.2
and m m m is theeffective reciprocating mass indicated in part II.

The force F (for the ith Cylinder) can be written assum of primaryand

= ω θ + θ

= +

2 2
i r i r i

secondary forces :
F m R Cos m (R / n)Cos2 .= ω θ + ω θ

Considering that 

the above forces are all in vertical direction, the resultant force of all the reciprocating inertia forces applied to the bearing 
by all the piston-connecting-rod assemblies is: 
 
A simple example can make the use of the last two equations clear.  Let us consider a four cylinder engine with the crank 
arms as shown in Fig. 3. The firing order is shown in Table 1. These two equations suggest  a systematic methodology  
shown in  Table 2 to calculate the values for the summation terms.  

( )

n n n
2 2

i r 1 i r 1 i
i 1 i 1 i 1

1 i

1 i 1

' ' '

F m R Cos( ) m (R / n)Cos(2 2 ),

is thecrank arm angular position of the first i.e. the reference piston and s are

asshown in the Fig.1. Considering a trigonometric relation ,
Cos( ) Cos Co

= = =

= ω θ + φ + ω θ + φ

θ φ

θ + φ = θ

∑ ∑ ∑

i 1 i

n n n
2 2

i r 1 i r 1 i
i 1 i 1 i 1

n n
2 2

r 1 i r 1 i
i 1 i 1

' ' '

' '

s Sin Sin , we have :

F m R Cos Cos m R Sin Sin

m (R / n)Cos2 Sin2 m (R / n)Sins2 Sin2 . (1)

Also, taking thecylinder number oneas the reference for the moment arm
calc

= = =

= =

φ − θ φ

= ω θ φ − ω θ φ +

+ ω θ φ − ω θ φ

∑ ∑ ∑

∑ ∑

n n n
2 2

i r 1 i i r 1 i i
i 1 i 1 i 1

n n
2 2

r 1 i i r 1 i i
i 1 i 1

' ' '

' '

ulation, the resul tan t moment of theaboveinertia forces is :

M m R Cos a Cos m R Sin a Sin

m (R / n)Cos2 a Sin2 m (R / n)Sins2 a Sin2 . (2)

= = =

= =

= ω θ φ − ω θ φ +

+ ω θ φ − ω θ φ

∑ ∑ ∑

∑ ∑
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Table 2. Calculating the  Σ  (i.e. summation terms ) equations (1) and (2). 
 
 

ith cylinder
1 0 1 0 1 0 0 0 0 0 0
2 180 -1 0 1 0 a (-1)a 0 a 0
3 180 -1 0 1 0 2a (-2)a 0 2a 0
4 0 1 0 1 0 3a (3)a 0 3a 0

Summation 0 0 4 0 0 0 6a 0

Primary reciprocatingsecondary reciprocating Primary vibrating secondary vibrating
inertia forces are inertia forces are moments are moments are
balanced not balanced balanced not balanced

iφ iCosφ iSinφ iCos2φ iSin2φ i ia Cosφ i ia Sinφ i ia Cos2φ
i ia Sin2φia

It can be seen that  both  primary forces and moments,  which are of prime importance, are balanced. As indicated before, 
the secondary unbalanced ones are of the lesser importance because of their division by  the  factor  n.  Note that n is 
usually larger than one.  
 
Therefore, from equations (1) and (2) and the above table, the unbalanced inertia  force and moment that are applied to 
the bearings are: 
 

2n
2 r

i r 1 1
i 1

2n
2 r

i r 1 1
i 1

'

'

(4)m RF m R {[(Cos2 ) / n](4)} Cos2 , (3)
n

(6a)m RM m R {[(Cos2 ) / n](6a)} Cos2 (4)
n

=

=

ω
= ω θ = θ

ω
= ω θ = θ

∑

∑
 

 
Extension of this basic solution methodology to a more complex geometry and cylinder arrangement is straightforward. 
Secondary unbalanced forces can be balanced by use of a twin countershaft  design.  These shafts are mounted each on 
one side of the  engine and turn at twice the crankshaft rotation speed because of the 2θ1  term in equation (3). Also, keep 
in mind that for the total force applied to the bearing, the gas pressure force on the piston should be algebraically added to 
the inertia forces. Generally, at low engine speeds the gas pressure forces dominate the inertia forces near the TDC in the 
power stroke. At high-speed however, they become comparable and the inertia forces can dominate depending on the 
engine speed. This completes demonstration of  the balancing methodology applied to a simple four-cylinder engine 
arrangement. For more details, the reader invited to refer to Vehicle and Engine Technology by H. Heisler as a good 
starting point. 
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