

A Unified Approach on Combustion Instability in Cryogenic Liquid Rocket Engines

Bruce Chehroudi, PhD

Advanced Technology Consultants Principal Scientist

Presentation at 47th AIAA Aerospace Sciences Meeting Orlando, Florida 5-8 January, 2009

Advanced Technology Consultants

- Motivation & objectives
- Combustion instability
- Supercritical fluids
- Injectors for liquid rockets
- Mechanism of acoustic combustion instability (CI) in Liquid Rocket Engines (LRE)

Contents

- Supercritical fluids and acoustic test facility
- Jet's "dark core" characteristic: a key parameter
 - Non-reacting coaxial jet & connection to multi-element LRE stability (coaxial, AFRL)
 - Non-reacting coaxial jet & connection to single-element LRE stability (coaxial, DLR & PennState)
 - Impact of "d/V" ratio on dark core length & connection to LRE stability (Hewitt) (single & impinging jets)
 - Comparable preimpingement (for impinging jet in LRE) and dark core lengths (DLR, AFRL & PennState)
 - A proposed hypothesis
- Unified Injector Sensitivity Theory
- Supporting data and offered explanations by the theory (in brief)
- Conclusions

- High combustion chamber pressure and temperature generally reflect to high efficiency and/or thrust in diesel, gas turbine, and rockets.
- The Space Shuttle main engine thrust chamber pressure is about 22.3 MPa.
 - This is supercritical for the liquid H₂ (1.28/32.94) and liquid O₂ (5.04/154.6). (Pc in MPa / Tc in K)
 - The combustion chamber pressure for Vulcain (Ariane 5) with liquid H₂ /liquid O₂ can reach up to 10 MPa while a record pressure of nearly 28.2 MPa has been reported
- Limited information is available for jets injected under these conditions where injectant finds itself in a thermodynamic supercritical environment.
- Understanding mechanism of acoustic combustion instabilities under such a high pressure environment has been a challenge

Combustion Instability in Liquid Rocket Engine (LRE)

Viewing Direction

- The LOX core was found to decrease in length during a combustion instability event
- LOX core exhibits large-scale sinusoidal structure

Heidmann, NASA TN D-2725, 1965 NASA Lewis Film C-226, 1965

Combustion Instability: Nature of the Problem

Combustion Instability: Phenomenological Model $(n-\tau)$

Amount of liquid converted to gas in the element dV in interval t to t+dt =

What was injected at the time $t-\tau$ in the interval $d(t-\tau)$

$$w_l dV dt = \delta \dot{m}_i (t - \tau) d(t - \tau)$$

$$w_l = \overline{w}_l + w'_l$$
$$\tau = \overline{\tau} + \tau'$$

$$w_l' = \overline{w}_l n \left[\frac{p'(t)}{\overline{p}} - \frac{p'(t-\tau)}{\overline{p}} \right]$$

- No distinction between fuel and oxidizer.
- The arguments based on the idea of a time lag are directed mainly to constructing a representation of the mass source term conservation of mass.
 We
- Intention: to express the rate of conversion of liquid to gas in a volume element of the chamber.
- No consideration of combustion processes in detail.
- Assumption:Combustion occurs instantaneously, a view that determines how the time lag model ought to be incorporated in the equations.

Thermodynamic Critical Point

- Very large C_p at Critical Point (CP)
- Surface tension vanishes
- Heat of vaporization vanishes above CP
- Distinction between liquid and gas phases disappears above CP
- For mixtures: Critical mixing T & P (critical lines for 2-component)

Chehroudi, B., 2006. Supercritical Fluids: Nanotechnology and Select Emerging Applications, *Invited Review Paper*, special volume dedicated to Supercritical Fluids, *Combustion Science and Technology*, Vol. 178, No. 1-3, January 2006, pp. 555-621(67).

More Information on Emerging Applications of Supercritical Fluids

Combust. Sci. and Tech., 178: 555–621, 2006 Copyright © Taylor & Francis LLC ISSN: 0010-2202 print/1563-521X online DOI: 10.1080/00102200500294247

SUPERCRITICAL FLUIDS: NANOTECHNOLOGY AND SELECT EMERGING APPLICATIONS

Combustion Science and Technology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713456315 SUPERCRITICAL FLUIDS: NANOTECHNOLOGY AND SELECT EMERGING APPLICATIONS B. Chehroudi ^a

Online Publication Date: 01 January 2006 To cite this Article: Chehroudi, B. (2006) 'SUPERCRITICAL FLUIDS: NANOTECHNOLOGY AND SELECT EMERGING APPLICATIONS', Combustion Science and Technology, 178:1, 555 - 621 To link to this article: DOI: 10.1080/00102200500294247 URL: <u>http://dx.doi.org/10.1080/00102200500294247</u>

It is not just a "phenomenon", it is a "technology"

B. CHEHROUDI*

Engineering Research Consultants, Lancaster, California, USA

In this paper, a selected list of emerging applications of supercritical fluids (SCFs) are presented. In particular, demonstrated facts for the promise of the nanoscale science and technology and its overlap or interface with the SCFs technology are presented. It is argued that nanoengineered materials at the nanoscale have mechanical, optical, chemical, and electrical properties quite different from the bulk material. Examples of enhanced performance of many such materials when they are used in practical applications are given. SCFs, in particular carbon dioxide, on account of their special properties such as zero surface tension, low viscosity, and high solubility, enable them to play a critical role in many advanced technology applications. For example, as miniaturization efforts approach the nanoscale, surface tension forces become an important factor in many nanotechnology processes such as lithography in the electronic industry. In particular, the zero-surface-tension property of the SCFs presents them as a natural choice for nanotechnology

Major Kinds of Rocket Injectors

From Sutton, "Rocket Propulsion Elements," 6th ed., pg 299, Wylie 1992

Mechanism of Acoustic Combustion Instability (CI) in Liquid Rocket Engines (LRE)

- In LOX/H2 Engines (Coaxial injector; RL-10, J-2, J-2S; SSME). Conditions under which CI occurred more commonly (or inevitably):
 - Lower velocity ratio (VR) V_{H2}/V_{LOX}
 - Sufficiently low temperature of injected hydrogen (Temp Ramping)
 - Less recessed oxidizer tubes
 - Reduced injector pressure drop
 - True mechanism remains obscure
- In LOX/HC Engines (Impinging jets injector; mostly from F-1)
 - Sensitivity of jets and formation of spray fans to velocity fluctuations parallel to the injector face
 - Hewitt correlation suggests certain injector parameters (d/V)
 - Others (resurge, etc.)

3.3 Mechanisms in LOX/HC Engines

• Later developments at Aerojet and Penn State led to correlations with the parameter injector orifice diameter/injection velocity (D_j/V_j) to identify the peak injection response.

• These results are related to the dynamics of injectors but there is no associated modeling.

A Unified Approach on Combustion Instability in Cryogenic Liquid Rocket Engines (Bruce Chehroudi)

From Prof. F. Culick, CalTech

Injector Assembly and High-Pressure Chamber

PiezoSiren for Acoustic Field Generation

Circular-to-Rectangle Waveguide

PiezoSiren

- PiezoSiren generates up to 180 dB SPL
- Designed to operate under high pressure
- Several resonance frequencies
- Most dominant are at ~ 2700 and ~4800 Hz
- The acoustic waves are channeled through a specially designed waveguide

Coaxial Injector

Dark Core Characteristics is the Key Physical Interpretation

Root mean square (RMS) of the dark core length oscillations as

- A reflection of mass fluctuations (first order approximation)
- Indication of *intrinsic sensitivity* of the injector

Dark Core Characteristics is the Key Non-reacting Coaxial Jet & Connection to Multi-Element LRE

- RMS of the core length variations is much higher at subcritical chamber pressure at all velocity ratios
 - Intrinsic (higher) sensitivity at subcritical
- Lower RMS at high velocity ratio offered a possible explanation for the enhanced stability observed in LRE (at high V_{H2}/V_{LOX})
- Temperature ramping (for LRE stability rating) was linked to its impact on the velocity ratio and hence core length RMS offered an explanation

(In Engine: V_{H_2}/V_{LOX})

Dark Core Characteristics is the Key Non-reacting Coaxial Jet & Connection to Fired Single-Element LRE

- Under all conditions, no instability could be triggered when operating above or very close to the critical point of oxygen (consistent with nonreacting jet's *intrinsic sensitivity* at subcritical)
- Significantly different dynamic behavior for subcritical as compared to near- & super-critical

 Also, results from Santoro's group at Penn State (Woodward et al.) in fired engine are consistent with observations at AFRL (see paper for details)

Fired-engine experimental observations consistent with Davis & Chehroudi (done in *non-reacting* supercritical facility at AFRL)

Dark Core Characteristics is the Key Impact of d/V on Dark Core & Connection to Multi-Element LRE Stability

Single & Impinging Jets:

- As "V" increases, the dark-core (or breakup) length decreases
- As "d" decreases dark core length decreases (Chehroudi et al. equation. See SAE Trans. Paper 850126)
- As "d/V" declines (and engine moves into unstable regime by Hewitt), the dark core length for each jet (of the impinging jet) decreases & an impinging jet system becomes more sensitive

Dark Core Characteristics is the Key Intrinsic Sensitivity of Impinging Jet Injector at Low d/V values

Figure 8. Shows *sheet breakup length* as a function of instability parameter at three different impingement included angles. Much higher sensitivity of the *sheet breakup length* is seen with included angle (20) at low dn/V (= d_o/U_j , in the original article) values. Anderson et al. [13].

Figure 9. Shows *sheet breakup length* as a function of instability parameter at three different chamber pressures. Much higher sensitivity of the *sheet breakup length* is seen with chamber pressure at low dn/V (= d_o/U_j , in the original article) values. Anderson et al. [13].

Impinging Jets:

- PennState work in non-reacting setup (Anderson et al.)
 - Higher sensitivity at lower values of d/V
 - Higher sensitivity to chamber pressure at low values of d/V
 - Intrinsic stability of the impinging jet injector at low d/V values (for more details see paper)

Dark Core Characteristics is the Key Comparable Preimpingement Length and Dark Core Length

PREIMPINGEMENT LENGTH DARK CORE LENGTH SINGLE CRYOGENIC JET Spray Intact Core Chamber-to-Injectant Density Ratio (Upper/Lower bounds) (Chehroudi et al. [12]) 0.500 0.167 0.100 0.071 0.056 0.045 100 50 PREIMPINGEMENT Dark-Core Length (Dark, Intact, Potential Core Length)/(Nozzle Diameter) Chehroudi (LN2 into GN2) LENGTH Models 40 Harsha Potential core Raman measurement, laminar 30 Correlation incompressible submerged x_c/d jet (Re=600) 20 Potential core turbulent nonisothermal submerged 8 gas jet (Temperature ratio 10 0.37, Abramovich theory) 9131~11778 0 Injectant-to-Chamber Density Ratio 22 10 14 18 2 **AFRL RESULTS IMPINGING JETINECTOR DLR RESULTS** LRE 0.01 0.10 1.00

Single & Impinging Jets:

- Cryogenic, sub- and super-critical conditions (AFRL data)
- Similar and comparable DLR data
- Comparable pre-impingement distance (for impinging jet injectors) in production (LRE) engines and measured dark core lengths (for cryogenic jets)

A Unified Approach on Combustion Instability in Cryogenic Liquid Rocket Engines (Bruce Chehroudi)

Chamber-to-Injectant Density Ratio

Supporting Information for a Proposed Hypothesis

A Hypothesis:

The Hewitt stable-tounstable transition point (or line) as d/V reduces is at or near where the dark core length reaches а critical value. being comparable the to distance from the holes exit plane (of the impinging injector) to impinging the point the (i.e., preimpingement length).

Figure 8. Shows sheet breakup length as a function of instability parameter at three different impingement included angles. Much higher sensitivity of the sheet breakup length is seen with included angle (20) at low $dn/V (= d_q/U_i)$ in the original article) values. Anderson et al. [13].

Figure 9. Shows sheet breakup length as a function of instability parameter at three different chamber pressures. Much higher sensitivity of the sheet breakup length is seen with chamber pressure at low dnV (= d_vU_j , in the original article) values. Anderson et al. [13].

A Unified Injector Sensitivity Theory Single Jet and Coaxial Jet Injectors

A Unified Injector Sensitivity Theory

Impinging Jet Injector

A Unified Injector Sensitivity Theory

H=1.62

Er=0.74

Key Components of the Unified Theory:

- 1.All share a "dark core" with Mean & RMS, suggesting a unified approach for intrinsic sensitivity of the jet to its environment
- 2. When an important dynamic feature (darkcore or breakup zone) of an injector design becomes sufficiently sensitive to thermofluid parameters of its environment, it is highly likely that this could strengthen the feedback link thought to be critical in the amplification process and hence move the dynamic system into an unstable operating regime.
- 3. See schematic diagram of hypothesis

MANY EXPERIMENTALLY OBSERVED TRENDS ARE CONSISTENT WITH THE THEORY

MANY EXPERIMENTALLY OBSERVED TRENDS ARE CONSISTENT WITH THE THEORY

MANY EXPERIMENTALLY OBSERVED TRENDS ARE CONSISTENT WITH THE THEORY

MANY EXPERIMENTALLY OBSERVED TRENDS ARE CONSISTENT WITH THE THEORY

MANY EXPERIMENTALLY OBSERVED TRENDS ARE CONSISTENT WITH THE THEORY

MANY EXPERIMENTALLY OBSERVED TRENDS ARE CONSISTENT WITH THE THEORY

MANY EXPERIMENTALLY OBSERVED TRENDS ARE CONSISTENT WITH THE THEORY

MANY EXPERIMENTALLY OBSERVED TRENDS ARE CONSISTENT WITH THE THEORY

MANY EXPERIMENTALLY OBSERVED TRENDS ARE CONSISTENT WITH THE THEORY

MANY EXPERIMENTALLY OBSERVED TRENDS ARE CONSISTENT WITH THE THEORY

MANY EXPERIMENTALLY OBSERVED TRENDS ARE CONSISTENT WITH THE THEORY

- A hypothesis is proposed to link observations made in cold flow injector studies, sub-scale fired engines, and full-scale production engines with an aim to offer a sketch of a *Unified Injector Sensitivity Theory* which is consistent with most observations pertaining to combustion instability.
- This is a unique and systematic approach based on dynamic behavior of the "Jet-core length" observed and characterized for single jets (showerhead), coaxial jets, and impinging jets
- This theory, <u>for the first time</u>, attempts to propose & unify the underlying mechanism responsible for the sensitivity of different liquid rocket injectors to acoustic field established inside the rocket thrust chamber
- Theory is able to offer plausible explanations for combustion instability observations in liquid rocket engines under sub- and super-critical conditions

Coming Soon at AIAA Journal od Propulsion and Power

JOURNAL OF PROPULSION AND POWER

Physical Hypothesis for the Combustion Instability in Cryogenic Liquid Rocket Engines

Bruce Chehroudi Advanced Technology Consultants, Laguna Niguel, California 92677

DOI: 10.2514/1.38451

In this work, the author would like to portray a sketch of a fluid dynamical picture to describe the coupling nature/ strength between the chamber acoustics and the injectors. This new perspective is achieved through a physically intuitive argument combined with previously published test results for two popular injector designs, namely, coaxial and impinging jets. For the impinging-jet injectors, it is shown that the dynamic behavior of the dark-core (or breakup) zone for each jet, their lengths and thicknesses, has a profound impact on injector sensitivity to disturbances in its surrounding. This information is used to offer a possible explanation for the trends seen on the Hewitt stability plot in impinging-jet injectors.

Acknowledgement

- Mr. Jay Levin (retired) and Doug Talley, AFRL_Edwards
- Financial support comes from Dr. Mitat Birkan, AFOSR
- The followings are thanked for review, comments, and suggestions:
 - Prof. R. Santoro, Penn State
 - Prof. F. Williams, UCSD
 - Prof. W. Sirignano, UC_Irvine
 - Prof. Vigor Yang, Georgia Tech

BACKUP SLIDES

Conclusions

• A Unified Injector Sensitivity Theory is proposed

- Unique systematic approach based on dynamic behavior of the "Jetcore length" characterized for single jets (showerhead), coaxial jets, and impinging jets
- This theory, <u>for the first time</u>, attempts to propose & unify the underlying mechanism responsible for the sensitivity of different liquid rocket injectors to acoustic field established inside the rocket thrust chamber
- Theory is able to offer plausible explanations for combustion instability observations in liquid rocket engines under sub- and super-critical conditions
- Theory is consistent with the examined (so far) existing body of data from cold to fired single-element tests, as well as able to explain engine data such as Hewitt Stability Correlation (see paper for details)