

www.advtechconsultants.com

Supercritical Fluids and Injection Processes of Relevance to High-Pressure Combustion

Bruce Chehroudi, PhD

Vice President of Research and Development Advanced Technology Consultants <u>www.advtechconsultants.com</u> ChehroudiB@aol.com

Kolloquium Thermo- und Fluiddynamik (KTF) ETH Swiss Federal Institute of Technology Zurich

February 18, 2009

Advanced Technology Consultants

www.advtechconsultants.com

1.

Table of Contents

Motivation

2. Background

- a) Acoustic combustion Instability
- b) Liquid rocket combustion chamber
- c) Injectors
- d) Liquid rockets & supercritical fluids
- 3. Facility

4. Single jet (no acoustic interaction)

- a) Growth (or spreading) Rate
- b) Modeling

5. Single jet (with acoustic interaction)

- a) Test setup
- b) Results

6. Coaxial jets (no acoustic interaction)

- a) Growth (or spreading) rate
- 7. Coaxial jets (with acoustic interaction)
 - a) Test setup
 - b) Dark core analysis
 - c) Results

8. Unified injector sensitivity theory and Combustion Instability

9. Conclusions

Motivation

- High combustion chamber pressure and temperature generally reflect to high efficiency and/or thrust in diesel, gas turbine, and rockets.
- The Space Shuttle main engine thrust chamber pressure is about 22.3 MPa.
 - This is supercritical for the liquid H_2 (1.28/32.94) and liquid O_2 (5.04/154.6). (Pc in MPa / Tc in K)
 - The combustion chamber pressure for Vulcain (Ariane 5) with liquid H₂ /liquid O₂ can reach up to 10 MPa while a record pressure of nearly 28.2 MPa has been reported
- Understanding mechanism of acoustic combustion instabilities under such a high pressure environment has been a challenge
- Limited information is available for jets injected under these conditions where injectant finds itself in a thermodynamic supercritical environment.

www.advtechconsultants.com

Combustion Instability in Liquid Rocket Engine (LRE)

LOX Core

Viewing Direction

- The LOX core was found to decrease in length during a combustion instability event
- LOX core large scale sinusoidal structure

Heidmann, NASA TN D-2725, 1965 NASA Lewis Film C-226, 1965

Mechanism of Combustion Instability in LRE

Simplified Diagram for the Dynamics of a Liquid Rocket Engine

Fred Culick (CalTech)

www.advtechconsultants.com

What Is The Physics?

Entropy waves: The adiabatic flame temperature of richer (leaner) pockets of mixture is higher (lower) than average. Thus, equivalence ratio fluctuations will lead to fluctuations in the hot gas temperature downstream of the flame (i.e., so-called entropy waves)

www.advtechconsultants.com

Pressure Oscillations

"Like Doublet Injector with a 16 cm High Baffle" without 1T-mode Acoustic Cavities

Combustor as a Feedback Amplifier

www.advtechconsultants.com

FIGURE 1.1. Schematic diagram of a combustion system as a feedback amplifier.

Data of the sort sketched in Figure 1.34 leave no doubt that the unstable motions in combustion chambers are self-excited, having the characteristics shown in Figure 1.34(a). The physical origin of this behavior is the dependence of the energy gains and losses on the motions themselves. For combustion instabilities, the 'system' is the dynamical system whose behavior is measured by the instrument sensing the pressure oscillations. Thus, in view of earlier remarks, the dynamical system is in some sense the system of acoustical motions in the chamber coupled to the mean flow and combustion processes (recall Figure 1.1).

Historical Note on Combustion Instability in LRE

www.aduechconsulTiwo classes of instabilities:

- "<u>Nonacousic</u>": chugging represented as low-frequency pulsations (p ~ uniform) in a lumpedparameter system containing time lags, especially due to the propellant supply system
- "Acoustic": high frequency, caused by coupling between the combustion processes and the unsteady motions
- Acoustic combustion instability has been one of the most complex phenomena in liquid rocket engines, and therefore
 - difficult to fully understand, control, and predict particularly in the design of large-output rockets
- The difficulty arises from the emergence of oscillatory combustion with rapidly increasing and large pressure amplitudes.
 - This leads to local burnout of the combustion chamber walls and injector plates which is caused through extreme heat-transfer rates by high-frequency pressure and gas velocity fluctuations
- Resonance acoustic modes of the thrust chamber, amongst them the transverse modes being the most troublesome, are excited through the energy provided by the combustion.
- The amplification process is thought to include
 - a feedback of information from the acoustic field to the injector or near-injector phenomena which in turn tends to reinforce the combustion-to-acoustic-field energy transfer processes.
- The underlying physics of this energy transfer is the widely cited general principle by Lord Rayleigh
 - He stated that the interaction between the combustion heat release and the acoustic field is the strongest if heat is added in a region of space and at the time when the acoustic amplitude is the highest.
- Although this view (*i.e., Rayleigh's*) has been useful, evidences gathered by past investigations attributed combustion instability to a complex interaction of the external acoustic field with the fuel injection (or near-injector) processes as a feedback mechanism, thereby leading to incidences of instability in rocket engines.

Historical Note on Combustion Instability in LRE

TUESDAY, AUGUST 28, 2001:

Six weeks after its nextgeneration Ariane 5 rocket malfunctioned, Arianespace is ready for its next commercial satellite launch, albeit using the older workhorse Ariane 4 booster. Officials have cleared the Ariane 4 for blastoff at 0646 GMT (2:46 a.m. EDT) Thursday from the ELA-2 launch complex at the Guiana Space Center in Kourou, French Guiana on South America's northeastern coast. Investigators probing the July 12 failure of the Ariane 5 blamed the mishap on "combustion instability" during ignition of the rocket's upper stage. The pressure spike caused an inproper mixture of fuel and oxidizer feeing to the stage's engine, resulting in reduced thrust and a premature engine shutdown when the oxidizer was used up 80 seconds sooner than planned. The rocket's two satellite cargos were deployed into an orbit vastly lower than planned due to the upper stage trouble.

3.1 Summary of the F-1 Program

- Reference: Olefein and Yang, (1993) J. Propulsion and Power, Vol. 9, No. 5, (pp. 657–677)
 - LOX/HC (PR-1, kerosene)
 - Summary of Development
 - Lineage E-1(1950s) \rightarrow MA-2(Atlas) \rightarrow H-1(Saturn I)
 - Experience with combustion instabilities in F-1

PERIOD	NUMBER OF TESTS	NUMBER OF CI	REMARKS	
1959-1960	44	20	$(\Delta p)_{p-p} \ge \overline{p}$	
1960–1960	_	—	 Linear or Nonlinear Instabili identified: "self-triggering" Baffles required for dynamic stability 	
1962-1965	207		Preliminary Flight Rating Texts (DEBT): 11 injusteers	
1962-1965	207 422		 Preliminary Flight Rating Tests (PFRT): 11 injectors Flight Rating Tests (FRT): 46 	
1962–1965	207 422 703		 Preliminary Flight Rating Tests (PFRT): 11 injectors Flight Rating Tests (FRT): 46 injectors Qualification: 51 injectors 	

Liquid Rocket Combustion Chamber

ATC

Advanced Technology

C

Rocket Engine Thrust Chamber

Rocket Thrust Chamber

Rocket Engine

B. Chehroudi, PhD

Overall Characteristics

ROCKET vs. TURBINE ENGINES

TURBINE ENGINES	ROCKE ENGINES
Internal operating pressure ~ 300 psi	Internal operating pressures ~ 6000 psi
Turbine temperature ~ 3300F	Turbine temperatures ~ 1250 F
T/W ~ 6 AT T ~ 40,000 lbf	T/W ~ 65 AT T ~450,000 lbf
Room Temperature propellant	Cryogenic propellants (-280F to -423F)
Mission time at max thrust ~25%	Mission time at max thrust ~ 95%
Idle to max thrust time <~ 5s	Idle to max thrust ~ 1s

- Diagnostics for combustion instability studies must then deal With the Following requirements
 - Deposits (soot, etc.) on the walls
 - High temperature
 - High pressure
 - Fast-response
 - Dense liquid spray

Features of SSME Engine

Overview:

The Space Shuttle Main Engine (SSME) is the world's most reliable and highly tested large rocket engine ever built. The SSMEs have achieved 100% flight success, and a demonstrated reliability of 0.9995. The SSME is a reusable, staged-combustion cycle engine utilizing liquid hydrogen fuel to achieve high performance never previously attained in a production rocket engine. The SSME is the only operational, reusable liquid booster engine designed for human space flight.

The first flight of the upgraded Block II SSME will be in 2001.

Performance

Block II Space Shuttle Main Engine (full power level)

Maximum Thrust: (109% Power L	evel)	
	At Sea Level:	418,000 lb
191	In Vacuum:	512,300 lb
Throttle Range:	67% – 109%	
Pressures:	Hydrogen Pump Discharge:	6,276 psia
	Oxygen Pump Discharge:	7,268 psia
	Chamber Pressure:	2,994 psia
Specific Impulse: (In Vacuum)	452.3 sec	
Power: High Pressure Pumps		
	Hydrogen:	71,140 hp
	Oxygen:	23,260 hp
Area Ratio:	69:1	
Weight:	7,774 lb	
Mixture Ratio: (O/F)	6.03:1	
Dimensions:	168 in. long 96 in. wide	
Propellants:	Fuel: Oxidizer:	Liquid Hydrogen Liquid Oxvaen
	Oxidizer:	Liquid Oxyger

Features of RD-180 Engine

Characteristics (100% power)					
Nominal Thrust:	(sea level)	860,200 lb			
	(vacuum)	933,400 lb			
Specific impulse: (sea level)	311.3 sec				
Vacuum specific impulse:	337.8 sec				
Chamber Pressure:	3,722 psia				
Nozzle area ratio:	36.4:1				
Mixture ratio:	2.72				
Length:	140 in.				
Diameter:	124 in				
Throttle Range:	47% – 100%				
Dry weight:	12,081 lb (5,480 kg)				

Description

- Staged-combustion cycle engine
- Liquid oxygen/kerosene propellants
- 2 thrust chambers (gimbal +/-8 degrees)
- 1 oxygen-rich preburner
- High-pressure turbopump assembly
 - 2-stage fuel pump single-stage oxygen pump single turbine
- Hypergolic ignition
- Self-contained hydraulic system
 - powered with kerosene from fuel pump
- Minimal interfaces with launch pad and vehicle
- 70% RD-170 parts

Liquid Rocket Injectors

Major Kinds of Rocket Injectors

From Sutton, "Rocket Propulsion Elements," 6th ed., pg 299, Wylie 1992

ATC Advanced Technology Consultants

w.advtechconsultants.com

Major Kinds of Rocket Injectors

Туре	Element Configuration	Advantages	Disadvantages	Engine Application
Unlike Doublet (1 on 1)	e e e e e e e e e e e e e e e e e e e	Proven dependability Good overall mixing Simple to manifold Extensive studied	Subject to blowapart with hypergolic propellants Wall compatibility problems due to mixture- ratio gradients	LEM ascent engine Delta launch vehicle
Unlike Triplet (2 on 1)	Or Fast	 Good overall mixing Resultant spray direction is axial Proven dependability 	 Subject to blowapart with hypergolic Wall compatibility is good only when fuel is used in outer orifices 	• Agena upper stage, Gemini
Unlike Quadlet (2 on 2)		Can be used near wall Resultant spray direction is axial Proven dependability	Subject to blowapart with hypergolic propellants Difficult to manifold Not well characterized	•Titan III first, second stage •Titan II, second stage
Like Doublet (1 on 1)	•••••••	Easy to manifold Good mixing, Very stable Not subject to blowapart Well understood	Requires increased axial distance to mix Sensitive to design tolerances	•Titan I,II first stage •Jupiter, Thor, Atlas •H-1, F-1 engines
Concentric Tube	Fuel	Very good wall compatibility Low pressure drop	Poor mixing Difficult to fabricate Tends to become unstable when throttled	Russia use extensively

Element Designation	Element Configuration (Flow Direction)	Characteristics	Engine Application
Concentric Tube	GAS LID GAS	 Very good wall competibility Very high performance with LOX/M₂ Good stability characteristics with LOX/M₂ Fuel is gata Small annular gap requires care in fabrication and is sensitive to contistmetion 	Shuttle main and preburners J-2 Orbit Transfer Vehicle
Concentric Tube with Liquid Swirl		Same as concentro: tube except: Improved mwing and atomization More compress element Stability characteristics in large engines unknown Possible was compatibility issue with some designe Gas can also be swrited	• RL-10
Unlike Pentad (4 on 1)		Applicable to very high or low mixture or density raised Good mixing and atomization biffout to manifold	• Experimental
Unlike Doublet (1 on 1)	OX PUEL MP DIST	Good oversit manip and atomization (High Performance): Simple to manifold Subject to blowapart with hypergolic propetients	LEM ascent engine. Detta launch vehicle Aimost all high resconse attructe control engines using storable propellante
Unlike Triplet (2 on 1)	CX FLEL CX	Good overall mong and atomication (High Performance) Symmetric spray pattern Subject to blowapart with hypargolic propetents - Fuel can be gets Pattern can be revenaed	Agena upper stage Rocketdyne LEM descent engine design LOX/RPI gas generators
Like Doublet (1 on 1)	OX REL OX REL	Easy to manifold Excellent for chemice wait compatibility Not subject to biowapart Less effective atomization and mixing than unlike miprigrig elements	Tilan 1 and 8 first stage Redstone, Jupiter, Thor, Allas boostere Snuttle CMES H+1, F-1 engines
Showerhead ©	OX RJEL	Often employed for fuel boundary layer cooling of chamber wall Easy to manifold Poor stormization and mixing (Low Performance)	Aarobee sustainer ×15 Pioneer
Variable Area (Pintle)	Rel	Throttleable over wide range Complex fabrication Lower performance	LEM descent engine Lance-sustainer
Splash Plate	SPLASH PLATE	Less sensitive to design tolerances Generally larger elements	Lance booster (early version) Satum St/B ullage control Apole CM RCS (SE-8) Gamin SC maneuvening attitue control and reanity engrise

Common Injection Element Configurations

Water Testing Rocket Injectors

Water flow test of F-1 engine injector system

Water flow test of pintle injector for Air Force 250,000 lbf Engine

Like Doublet (1 on 1)	Easy to manifold Good mixing, Very stable Not subject to blowapart Well understood	Requires increased axial distance to mix Sensitive to design tolerances	•Titan I,II first stage •Jupiter, Thor, Atlas •H-1, F-1 engines

B. Chehroudi, PhD

Space Shuttle Main Engine Injector

ATC

Advanced Technology

Injector Requirements

- Complete combustion in the shortest possible length
 - Main injectors: performance vs weight tradeoffs
 - Preburners/GG's: downstream component interactions, eg, turbine blades, etc
- Acoustically stable
 - Chamber modes
 - Feed system coupling
- Chamber/wall compatibility
 - Heat transfer/cooling
 - Oxygen blanching
 - Lifetime

- Manage pressure drop
- Throttling
- Ignitable; minimum ignition transients
- Cost, weight
- The "ilities:"
 - Reliability
 - Maintainability
 - Manufacturability
 - Durability
 - Operability
 - PREDICTABILITY

Liquid Rockets and Supercritical Fluids

B. Chehroudi, PhD

Thermodynamic Critical Point

T_C

Temperature

Chehroudi, B., 2006. Supercritical Fluids: Nanotechnology and Select Emerging Applications, *Invited Review Paper*, special volume dedicated to Supercritical Fluids, *Combustion Science and Technology*, Vol. 178, No. 1-3, January 2006, pp. 555-621(67).

Thermodynamic Critical Point

1000

Temperature, K

¹ Street, W. B., and Calado, J. C. G., J. Chem. Thermodynamics, Vol. 10, 1978, pp 1089-1100.

Critical Temperature, K

Critical Properties & Engine Conditions

More Information on Emerging Applications of Supercritical Fluids

Tavlor & Francis

Taylor & Francis Group

Combustion Science and Technology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title-content=t713456315 SUPERCRITICAL FLUIDS: NANOTECHNOLOGY AND SELECT EMERGING APPLICATIONS B. Chehroudi ^a ^a Engineering Research Consultants, Lancaster, California, USA

Online Publication Date: 01 January 2006 To cite this Article: Chehroudi, B. (2006) 'SUPERCRITICAL FLUIDS: NANOTECHNOLOGY AND SELECT EMERGING APPLICATIONS', Combustion Science and Technology, 178:1, 555 - 621 To link to this article: DOI: 10.1080/00102200500294247 URL: <u>http://dx.doi.org/10.1080/00102200500294247</u>

It is not just a "phenomenon", it is a "technology"

B. CHEHROUDI*

Engineering Research Consultants, Lancaster, California, USA

In this paper, a selected list of emerging applications of supercritical fluids (SCFs) are presented. In particular, demonstrated facts for the promise of the nanoscale science and technology and its overlap or interface with the SCFs technology are presented. It is argued that nanoengineered materials at the nanoscale have mechanical, optical, chemical, and electrical properties quite different from the bulk material. Examples of enhanced performance of many such materials when they are used in practical applications are given. SCFs, in particular carbon dioxide, on account of their special properties such as zero surface tension, low viscosity, and high solubility, enable them to play a critical role in many advanced technology applications. For example, as miniaturization efforts approach the nanoscale, surface tension forces become an important factor in many nanotechnology processes such as lithography in the electronic industry. In particular, the zero-surface-tension property of the SCFs presents them as a natural choice for nanotechnology

Supercritical Test Facility

Experimental Setup

Figure 1. Schematic diagram of experimental setup for sub- to supercritical jet injection.

Pictures of the Injector Assembly and High-Pressure Chamber

ATC

Advanced Technology

Consultants

echconsultants.cc

Single Jet (no acoustic interaction)

What Do You See?

Chehroudi, et al., 2002. Visual Characteristics and Initial Growth Rates of Round cryogenic Jets at Subcritical and Supercritical Pressures, *Physics of Fluids*, Vol. 14, No. 2, February.

Single Jet At Sub- And Supercritical Conditions

Images of liquid N₂ injected into Gaseous N₂ at a fixed chamber temperature of 300K but varying sub- to supercritical pressures ($P_r=P_{ch}/P_{critical}$).Re= 25-75 x 10³. Inj. velocity: 10-15 m/s.Froud number: 40 to 110 x 10³. Injectant temperature: 99 to 120 K. (injector tube well insulated with no co-flow feature and no externally imposed acoustic field)

Chehroudi, B., Talley, D., and Coy, E., 2002. Visual Characteristics and Initial Growth Rates of Round cryogenic Jets at Subcritical and Supercritical Pressures, *Physics of Fluids*, Vol. 14, No. 2, February.

Single Jet At Sub- And Supercritical Conditions

Images of liquid N₂ injected into Gaseous N₂ at a fixed chamber temperature of 300K but varying sub- to supercritical pressures ($P_r=P_{ch}/P_{critical}$).Re= 25-75 x 10³. Inj. velocity: 10-15 m/s.Froud number: 40 to 110 x 10³. Injectant temperature: 99 to 120 K. (injector tube well insulated with no co-flow feature and no externally imposed acoustic field)

Chehroudi, et al., 2002. Visual Characteristics and Initial Growth Rates of Round cryogenic Jets at Subcritical and Supercritical Pressures, *Physics of Fluids*, Vol. 14, No. 2, February.

w.advtechconsultants.con

Single Jet At Sub- And Supercritical Conditions

Magnified images of the jet at its outer boundary showing transition to the gas-jet like appearance starting at just below the critical pressure of the injectant. Images are at fixed supercritical chamber temperature of 300 K. (injector tube well insulated with no co-flow feature and no externally imposed acoustic field)

Pch=4.14 Mpa Pch=3.13 Mpa Pch=9,19 Mpa Reynolds=66,609 Reynolds=42,830 Reynolds=75,281 Mass flow=350 ma/s Mass flow=350 mg/s Mass flow=352 mg/s Inj. Velocity=14.1 m/s Inj. Velocity=11.7 m/s Inj. Velocity=14.9 m/s P_=0.91 $P_{r}=1.22$ $P_{r}=2.71$ Appearance of Mixing layer affected conventional breakup Appearance of

Appearance of conventional breakup of liquid surface indicating ligaments and drops ejecting from the mixing zone

Mixing layer affected by sub- to supercritical transition. No drops are seen. Fingure-like structures

Appearance of Gas/gas mixing layer

Taylor and Hoyt, 1977 (Wind-induced Breakup Regime)

- HIGH SPEED PHOTOGRAPH OF WATER JET CLOSE TO THE NOZZLE EXIT SHOWING WAVE INSTABILITIES AND BREAKUP
- SECOND WIND-INDUCED BREAKUP REGIEM

- A unique & nonexistent plot, covering 4 orders of magnitude in density ratio for mixing layer, liquid sprays (Diesel), turbulent jets (compressible & incompressive), supersonic jets, and theory
- For the first time, a <u>quantitative proof</u> that supercritical jets grow similar to variable-density incompressible jets

Growth (or Spreading) Rate for Turbulent Incompressible Round Jet

(Abramovich)

 $\frac{\mathrm{Db}}{\mathrm{Dt}} \propto \mathbf{v}' \propto -\ell \frac{\partial \overline{\mathrm{U}}}{\partial \mathbf{v}} \propto -\ell \frac{\mathbf{U}_{\mathrm{cl}}}{\mathbf{b}} \propto \mathbf{U}_{\mathrm{cl}}$ (1)and since $\frac{Db}{Dt} = \frac{db}{dx}\frac{dx}{dt} \propto U_{cl}\frac{db}{dx}$ (2) from the above two: $\frac{db}{dx} = \text{constant} \Rightarrow b = (\text{constant})x \Rightarrow$ $\ell = (\text{constant}) \mathbf{x}$ (3)2b is defined as the thickness of the velocity profile, Db/Dt is the total derivative, ℓ is mixing length, v is the transverse velocity fluctuations, and U_{c1} is the centerline max imum value of the time-averaged streamwise velocity profile.

Semi-Empirical Theory for the Jet Spreading Considering Compressibility (Abramovich)

In the main region of the jet: $\frac{db}{dx} \propto \frac{U_1 - U_2}{U_{chr}}$; where U_1 and U_2 are streamwise $U_{r} = \frac{U_{ambient}}{U};$ velocities at the boundaries of the mixing zone, U_{char} a characteristic velocity in the $\rho_{\rm r} = \frac{\rho_{\rm ambient}}{\rho_{\rm r}}; U_{\rm cl} = U_{\rm cl}({\rm x}); \rho_{\rm cl} = \rho_{\rm cl}({\rm x})$ zone, and x is in streamwise direction. If U_r and ρ_r do not depend on x (i.e. initial region) then For incompressible flow : $U_{char} = \frac{U_1 + U_2}{2}$ (4) from above: For compressible flow: $U_{char} = \frac{\rho_1 U_1 + \rho_2 U_2}{\rho_1 + \rho_2}$ (5) $\frac{b}{x} = C \frac{1 + \rho_r}{2} \frac{1 - U_r}{1 + \rho_r U_r}$ (6).From above equations for compressible flow From experiments in the initial region $\frac{db}{dx} = C \frac{1+\rho_r}{2} \frac{1-U_r}{1+\rho U_r}; \text{ where }$ of the submerged jet (i.e. $U_r = 0$) of an incompressible fluid ($\rho_r = 1$) C = 0.27 $U_r = \frac{U_2}{U_1}$ and $\rho_r = \frac{\rho_2}{\rho_1}$. is proposed. However, various experiments in hot jets, high - velocity jets, and supersonic jets under off - design discharge suggest a value of C = 0.22.

Chehroudi, et al., 2002. Visual Characteristics and Initial Growth Rates of Round cryogenic Jets at Subcritical and Supercritical Pressures, Physics of Fluids, Vol. 14, No. 2, February.

Theoretical Growth (or Spreading) Rate for Incompressible Variable-density Mixing Layer

Visual Thickness Brown/Papamoschou- Roshko (CalTech)

 $(M_c = (U - U_c)/a; a is speed of sound)$

 $U_{c} = (U_{1}\sqrt{\rho_{1}} + U_{2}\sqrt{\rho_{2}})/(\sqrt{\rho_{1}} + \sqrt{\rho_{2}})$ $\delta'_{vis} = 0.17(\Delta U/U_{c}) =$ $= 0.17(1 - U_{2}/U_{1})[1 + (\rho_{2}/\rho_{1})^{1/2}]/[1 + (U_{2}/U_{1})(\rho_{2}/\rho_{1})^{1/2}]$

Vorticity Thickness Dimotakis (CalTech)

- Chehroudi, et al., 2002. Visual Characteristics and Initial Growth Rates of Round cryogenic Jets at Subcritical and Supercritical Pressures, *Physics of Fluids*, Vol. 14, No. 2, February.
- Papamoschou, D. and Roshko, A.. "The compressible turbulent shear layer: an experimental study," J. Fluid Mech., vol. 197, 1988, pp. 453-477.
- Brown, G. "The Entrainment and Large Structure in Turbulent Mixing Layers," 5th Australian Conf. on Hydraulics and Fluid Mech., 1974, pp. 352-359.
- Dimotakis, P. E. "Two-dimensional shear-layer entrainment," AIAA Journal, 21, No. 11, 1986, pp. 1791-1796.

 $\delta_{\omega} = \varepsilon \{ (1 - U_2/U_1) / [1 + (\rho_2/\rho_1)^{1/2} (U_2/U_1)] \} \{ 1 + (\rho_2/\rho_1)^{1/2} - [1 - (\rho_2/\rho_1)^{1/2}] / [1 + 2.9] \\ (1 + U_2/U_1) / (1 - U_2/U_1)] \}$

- Characteristic bulge formation time (τ_b) at the jet interface (*Tseng et al.*): (ρ_lL³/s)^{1/2}; ρ_l, L, s are liquid density, characteristic dimension of turbulent eddy, and surface tension, respectively.
- Characteristic time for gasification (τ_g) (D-square law): D²/K; D and K are drop diameter and vaporization constant.
- <u>A Hypothesis</u>: If these two characteristic times (calculated for appropriate length scales) are comparable, then an interface bulge may not be separated as an unattached entity because it is gasified as fast as it desires to be detached (*onset of the gas-jet behavior*)

Chehroudi, et al., 2002. Visual Characteristics and Initial Growth Rates of Round cryogenic Jets at Subcritical and Supercritical Pressures, Physics of Fluids, Vol. 14, No. 2, February.

Remarkably Similar Equation Format for Different Cases

• Theoretical isothermal liquid spray growth rate (θ_s) based on Orr-Sommerfeld equation and stability analysis to find the wavelength of the most unstable interface wave:

 $\theta_{s} \cong 0.270 [0 + (\rho_{g}/\rho_{l})^{0.5}]$

ATC

Advanced Technology

Consultants

• Brown/Papamoschou-Rashko theory for incompressible variable-density gaseous mixing layer/jet:

 $\theta_{P/R} \cong 0.212 [1 + (\rho_g/\rho_l)^{0.5}]$

• Dimotakis theory for incompressible variable-density gaseous mixing layer/jet:

 $\theta_{D} \cong 0.265 \ [0.59 + (\rho_{g}/\rho_{l})^{0.5}]$

• ALL HAVE THE SQUARE ROOT OF DENSITY RATIO AND REMARKABLY THE SAME EQUATION FORMAT

Chehroudi, et al., 2002. Visual Characteristics and Initial Growth Rates of Round cryogenic Jets at Subcritical and Supercritical Pressures, Physics of Fluids, Vol. 14, No. 2, February.

echconsultants.co

A Proposed Model Equation

 Based on the information from previous slide, the following "intuitive" equation is proposed for both sub- and supercritical (measured) growth rates:

$$θ_{ch} \cong 0.27 [(τ_b/(τ_b + τ_g)) + (ρ_g/ρ_l)^{0.5}]$$

- For isothermal liquid case: $\tau_g \rightarrow \tau_b$ and $\tau_g \rightarrow \infty$. It then collapses to the isothermal spray case.
- For subcritical the $(\tau_b/(\tau_b + \tau_g))$ is calculated until it reaches 0.5. After that it is maintained constant at 0.5 for supercritical gas-like jet.
 - The transition point (between subcritical & supercritical behaviors) is found to be approximately when

 $(\tau_b/(\tau_b + \tau_q)) \cong 0.5$, that is:

 $\tau_g \cong \tau_{\rm b}$, which means that it vaporizes as fast as it forms the bulge

A Proposed Model Equation (cont.)

ATC

Advanced Technology Consultants

- $(\tau_{b}/(\tau_{b} + \tau_{g}))$ is assumed to be a dominant function of the density ratio (ρ_{g}/ρ_{l}) ; i.e. $\tau_{b}/(\tau_{b} + \tau_{g}) = F(\rho_{g}/\rho_{l})$.
- The function F is only calculated for the N2-into-N2 case and is taken to be the same for other (N₂-into-He and N₂into-Ar) cases. For example, for N₂-into-He :

$$\theta_{Ch} \cong 0.27 [G(\rho_q / \rho_l) + (\rho_q / \rho_l)^{0.5}] \text{ where } G(\rho_R) = F(\rho_R')$$

 $\rho_{\rm R} = (\rho_{\rm g} / \rho_{\rm l}); \qquad \rho_{\rm R}' = \rho_{\rm R} - (1-X) \rho_{\rm R} = X \rho_{\rm R}$

X=1.0 for N_2 -into- N_2 ; X=0.2 for N_2 -into-He ; X=1.2 for N_2 -into-Ar.

ATC Advanced Technology Consultants

Comparison of the Proposed Model (solid red line) with Experimental Data

Chehroudi, et al., 2002. Visual Characteristics and Initial Growth Rates of Round cryogenic Jets at Subcritical and Supercritical Pressures, Physics of Fluids, Vol. 14, No. 2, February.

Box-counting and Minkowski (EDM algorithm) fractal dimensions of the visual boundary of the jet as a function of the relative chamber pressure for N₂-into-N₂ injection.

Raman Scattering Approach

- Nd-Yag laser in 2nd harmonic at 532 nm
- Raman signal at 607 nm
- Double loop optical delay to extend pulse width from 10 ns to 30 ns.
- Notch filter at 532 nm; band pass and hi-pass filter to isolate Raman signal.
- Princeton Instruments N₂
 cooled ICCD camera
- Sheet forming optics to various sheet widths.

Chehroudi, et al., 2000. Raman Scattering Measurements in the Initial Region of Sub- and Supercritical Jets, AIAA/SAE/ASME/ASEE Joint Propulsion Meeting, AIAA 2000-3392, Huntsville, AL, 17-19 July.

Self-similarity Plot Supercritical Regime(3)

Chehroudi, et al., 2000. Raman Scattering Measurements in the Initial Region of Sub- and Supercritical Jets, AIAA/SAE/ASME/ASEE Joint Propulsion Meeting, AIAA 2000-3392, Huntsville, AL, 17-19 July.

Growth (or Spreading) Rates

Normalized FWHM of the density surplus radial profiles as a function of the normalized distance from the injector.

ATC

Advanced Technology Consultants

1220					Reduced		Diamet	er		Raynolds	Profile used		
	Fluid				Pressure	Inj/Chamb				number	to measure		
	Inj/Cham	Tinj	Pch	Tch	Pr	Density	D	L/D	x/D	Re	FWHM	1.000	
		K	MPa	K		Ratio	mm						
Oschwald et al	N2/N2	118	4	298	1.17	3.34	1.9	11.5	8.42	1.2E+05	Density	in Figs.	7, 8
Oschwald et al	N2/N2	140	4	298	1.17	12.5	1.9	11.5	1.05	1.3E+05	Density	in Figs. 8	8
Chehroudi et al	N2/N2	95	6.9	295	2.03	7.1	0.505	100	4.8 to 24.4	3.5E+04	Density	in Figs. a	8,10,11
Chehroudi et al	N2/N2	110	1.5	295	0.43	40.6	0.505	100	4.8 to 24.5	1.2E+04	Density	in Figs.1	0,11
										-			
So et. al.	(He+Air)/Air	275	0.1	275	0.08	0.64	9.5		5.1	5.0E+03	Concentration&Density	in Figs.	8, 11
So et. al.	(He+Air)/Air	275	0.1	275	0.08	0.64	9.5		6.4	5.0E+03	Concentration&Density	in Figs. (8, 11
												1	
Richards & Pitts	He into Air	275	0.1	275	0.44	0.138	6.35	~50	20-80	4.0E+03	Mass fraction	in Fig. 1	1
Richards & Pitts	C3H8 into Air	275	0.1	275	0.02	1 56	6 35	~50	40-120	25E+04	Mass fraction	in Fig 1	1

Chehroudi, et al., 2000. Raman Scattering Measurements in the Initial Region of Sub- and Supercritical Jets, AIAA/SAE/ASME/ASEE Joint Propulsion Meeting, AIAA 2000-3392, Huntsville, AL, 17-19 July.

Comparison of Shadowgraph Measurements with Raman Measurements

• 2 (FWHM) for Raman = Shadowgraph

ATC

Advanced Technology

Consultants

 Good Agreement: Indicating Consistency & integrity of two sets of data

Chehroudi, et al., 2002. Cryogenic Shear Layers: Experiments and Phenomenological Modeling of the Initial Growth Rate Under Subcritical and Supercritical Conditions, *Invited Paper, International Journal of Heat and Fluid Flow*, 23, pp. 554-563.

Large Eddy Simulation based model Validates AFRL experimental results

<u>UNDER SUPERCRITICAL CONDITIONS:</u> Casiano/MSFC (Sackheim), Yang/Penn State > effects of momentum flux and chamber operating conditions investigated using LES

Single Jet (acoustic interaction)

dvtechconsultants.com

High-Chamber-Pressure Test Rig

Housing for the PiezoSiren and the Waveguide flanged to the highpressure chamber

Wires from the PiezoSiren to wide-band amplifier Pressure transducer traversing micrometer

PiezoSiren for Acoustic Field Generation

Circular-to-Rectangle Waveguide

- PiezoSiren generates up to 180 dB SPL
- Designed to operate under high
 pressure
- Several resonance frequencies
- Most dominant are at ~ 2700 and ~4800 Hz

• The acoustic waves are channeled through a specially designed waveguide

ATC

Advanced Technology Consultants

Pch = 2.48 MPa, Frequency = 2700 Hz

Interaction of Acoustic Waves with a Cryogenic Nitrogen Single Jet at Subcritical Pch

Subcritical

Frequency: 2700 Hz Flow rate: 150mg/s Chamber temperature: 300 K

 $\mathbf{Pr} =$

• Acoustic waves amplify the instabilities

Accelerates liquid breakup

• Generates small satellite droplets

• Constricts the jet diameter in the wave direction

Single jet
<u>View:</u> perpendicular to acoustic direction

Interaction of Acoustic Waves with a Cryogenic Nitrogen Single Jet at Supercritical Pch Pr = 1.03 1.43 1.03

1.43

Supercritical

Frequency: 2700 Hz Flow rate: 150mg/s Chamber temperature: 300 K

 Shorter dark core Comparable jet thickness • Comparable growth rate Not as dramatic as subcritical

Single jet

Interaction of Acoustic Waves with a Cryogenic Nitrogen Single Jet at Subcritical Pch

Subcritical

Frequency: 2700 Hz Flow rate: 150mg/s Chamber temperature: 300 K

 $\mathbf{Pr} =$

- Acoustic waves amplify the instabilities
- Accelerates liquid breakup
- Generates small satellite
 droplets
- Widens the jet diameter in the normal to wave direction

Acoustic: ON

Acoustic: OFF

Single jet <u>View:</u> in the acoustic direction

Interaction of Acoustic Waves with a Cryogenic Nitrogen Single Jet at Supercritical Pch

Supercritical

Frequency: 2700 Hz Flow rate: 150mg/s Chamber temperature: 300 K

Pr =

Shorter dark core
Wider jet thickness
Faster growth rate

Acoustic: ON

Single jet <u>View:</u> in the acoustic direction

A significant widening of the jet perpendicular to the acoustic wave direction
Largest effect is observed near the critical point

Dark Core Length at Sub- and Supercritical Conditions

• Effects of acoustic wave on the intact-core (subcritical) or dark-core (Supercritical) length

Acoustic waves shortens these lengths

Interaction of Acoustic Waves with a Cryogenic Nitrogen Jet at Sub- and Supercritical Conditions

Single jet

Chehroudi, et al., 2002. Interaction of Acoustic Waves with a Cryogenic Nitrogen Jet at Suband Supercritical Pressures, 40th AIAA Aerospace Sciences Meeting & Exhibit, AIAA Paper 2002-0342, Reno, Nevada, January 14-17.

Rockwell, D. O.," External Excitation of Planar Jets," *Journal of Applied Mechanics*, pp. 883-891, December 1972.

What we know about gaseous jets:

- Upper zone regime: No effects were observed
 Preservation regime: The core flow of the jet tended to be preserved followed by the induction of smaller vortices, the time-averaged velocity profile was narrowed, and the longitudinal turbulence was decreased (relative to undisturbed case)
 Matched: When the excitation frequency was matched with the natural breakdown frequency, the effect was to accelerate the process of vortex formation and growth
 - relative to the undisturbed case
- Forced fusion regime: The natural breakdown vortices were forced to fuse early as a result of the formation of large-diameter applied disturbance vortices.
- Lower zone regime: The vortex growth was unaffected in their formation region

Coaxial Jet (No acoustic interaction)

Recirculated Hot gas

H2

low mixing &

2

mixed flame

mixture ratio

3

Diffusion flame

Hot gas H2O + H2

3000 K

300 m/s

Prof. Fred Culick (Caltech): **ONERA** Lectures on **Combustion Instability**

Vingert et al., (1993) PSU Symposium, Liquid Rocket

Engine Combustion Instability, (pp. 145–189).

- 2 : liquid + cold gas mixing zone, non reactive, non confined
- 3 : Spray + cold + hot gas mixing without burning
- 4 : Burning spray zone

Hot gas

6

0

ବ୍ରତ୍ତ

Ø

Flame

Liquid core surface

Gas-Gas interface

0

1 : liquid + cold gas mixing zone, non reactive, confined

Dispersed liquid objects (droplets, ligaments)

Coaxial Injector

Manifold for gaseous coflow distribution

Injector tip

Injector and its holder inside the chamber

Supercritical Facility

AFTER UPGRADES

BEFORE UPGRADES

Jet Exit Plane Temperature Measurement

- Axial Location of TC ~0.28D_i down of injector Exit Plane
- Traverse through jet measure radial profile
- Each individual TC calibrated with precision RTD
- Accuracy of temperature measurement critical for computed properties

Davis, D., Chehroudi, B., and Sorensen, I., 2005. Measurements in an Acoustically-Driven Coaxial Jet under Supercritical Conditions, 43ed AIAA Aerospace Sciences Meeting and Exhibit, Paper No. AIAA-2005-0736, Reno, Nevada, January 10-13.

Exit Plane Temperature Profiles

Davis, D., Chehroudi, B., and Sorensen, I., 2005. Measurements in an Acoustically-Driven Coaxial Jet under Supercritical Conditions, 43ed AIAA Aerospace Sciences Meeting and Exhibit, Paper No. AIAA-2005-0736, Reno, Nevada, January 10-13.

to liquid

- Subcritical P = 1.5 MPa
- Steep transition from gas to
- Core "top-hat" shape
- The width of the core changes

Automated Dark-Core Length Measurement

Mean Dark Core Length vs. Momentum

• "Two-Phase" Subcritical *P* jet's core length longer than near- or supercritical

• "Single-Phase" Near- and Supercritical *P* core length scales with *M*^{-0.5}

• (M is outer-toinner jet momentum flux ratio)

ATC

Advanced Technology

Consultants

Davis, D. W. and Chehroudi, B., 2006. Measurements in an Acoustically-Driven Coaxial Jet under Supercritical Conditions, *AIAA J. of Propulsion and Power*, Vol. 23, No. 2, March-April, pp. 364-374.

COAXIAL INJECTOR

dytechconsultants.con

Literature Reporting Core-Length of Shear-Coaxial Jets

Author	Date	Fluid	Fluid	Fluid	D1	D2	D3	(D3-D2)/2	Area Ratio	Post Recess	Injector
		Inner Jet	Outer Jet	Ambient	(mm)	(mm)	(mm)	(mm)		(mm)	Lpost/D1
Forstall & Shapiro	1950	Air+10%He	Air	Air	6.4, 25	NR	102	NR	NR	NR	NR
Chigier & Beer	1964	Air	Air	Air	25	64	97	16.5	8.50	0*	NR
Champage&Wygnanski	1971	Air	Air	Air	25	NR	NR	NR	1.28, 2.94	0*	NR
Au and Ko	1987	Air	Air	Air*	2	2.2	4	0.9	2.79	0*	NR
Eroglu et al.	1991	Water	Air	Air	0.971	1.262	10.36	4.549	112.15	-0.6	57
Woodward	1993	KI (aq.)	N2, He	N2, He	4.76	6.35	9.86	1.76	2.51	0.0	85
Villermaux et al. ^g	1994	Water	Water	Water	40	51	55	0.2	0.27	0*	"long"
Englebert et al.	1995	Water	Air	Air	2.3	2.95	14.95	6.00	40.60	0.0	22
Carreau et al.	1997	LOX	He, N2, Ar	NC ^c	5 ^d	5.57 ^d	16 ^d	5.2 ^d	9	0.0	NR
Rehab et al. ^g	1997	Water	Water	Water	NR	NR	NR	NR	1.82, 1.87, 5.24 ^e	0*	NR
Rehab et al. ^g	1997	Water	Water	Water	20	21	27	3	1.82	0	NR
Villermaux ^{g,h}	1998	Water	Water	Water	NR	NR	NR	NR	NR	NR	NR
Lasheras et al. ^g	1998	Water	Air	Air	3.8	4.2	5.6	0.7	0.95	0	29
Lasheras&Hopfinger ^{g,i}	2000	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Favre-Marinet&Schettini	2001	Air, SF6	Air,He	Air, He	20	20.4	27	3.3	0.78	0.0	6.75
Porcheron et al.	2002	LOX, Water	He, N2, Ar, Air	Air	5, 2.1	5.57, 2.5	16, 7	2.25	9, 9.69	0*	NR
Davis	2005	N2	N2	N2	0.51	1.59	2.42	0.415	12.80	0.25	100
Author	Date	Pressure	Ti	То	Too	Density Ratio	Velocity Ratio	М	Re Inner	Re Outer	We
		(MPa)	(K)	(K)	(K)	Outer/Inner	Outer/Inner	Outer/Inner	(10 ⁴)	(10 ⁴)	
Forstall & Shapiro	1950	0.1*	Ambient ^a	Ambient	Ambient	1.09	0.2 - 0.75	0.04 - 0.61	NR	NR	NA
Chigier & Beer	1964	0.1*	Ambient	Ambient	Ambient	1*	0.024 - 2.35	5.8e-4 - 5.52	~10 ^b	~10 ^b	NA
Champage&Wygnanski	1971	0.1	Ambient	Ambient	Ambient	1*	0 - 10	0 - 100	1.01 - 10.15	0 - 9.6	NA
Au and Ko	1987	0.1*	Ambient	Ambient	Ambient	1*	1.25 - 6.67	1.5 - 44	NR	NR	NA
Eroglu et al.	1991	0.1*	Ambient	Ambient	Ambient	0.001	4.5 - 131.2	0.02 - 17.2	0.15 - 0.93	2.0 -11.6	15 - 530
Woodward	1993	0.1 - 2.17	Ambient	Ambient	Ambient	0.0006 -0.018	0 - 30	0 - 1.7	7.86 - 18.9	NR	12 - 3600
Villermaux et al. ^g	1994	0.1*	Ambient	Ambient	Ambient	1	1 - 6	1 - 36	>5000	>5000	NA
Englebert et al.	1995	0.1	293	293 - 636	293	0.0008 - 0.0012	10.25 - 66.75	0.12 - 4.3	0.54 - 3.4	4.8 - 16.5	76 - 2610
Carreau et al.	1997	0.1	82 ^d	245 - 272 ^d	NC	NR	NR	3 - 21.5	5.32 - 8.11	NR	0.919e4 - 3.48e4
Rehab et al. ^g	1997	0.1*	Ambient	Ambient	Ambient	1	2.2 - 5.6	4.9 - 31	1 - 10	1 - 10	NA
Rehab et al. ^g	1997	0.1*	Ambient	Ambient	Ambient	1	2 - 5	4 - 25	NR ^f	NR ^f	NA
Villermaux ^{g,h}	1998	NR	NR	NR	NR	1*	NR	NR	NR	NR	NR
Lasheras et al. ^g	1998	0.1	Ambient	Ambient	Ambient	0.001	NR	NR	NR	NR	NR
Lasheras&Hopfinger ^{g,i}	2000	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Favre-Marinet&Schettini	2001	0.1	Ambient	Ambient	Ambient	0.028 - 1	3.0 - 70	1 - 200	NR	3200, 11000	NA
Porcheron et al.	2002	0.1	82, 293	245 - 293	293	1.6e-4 - 2.3e-3	NR	2 - 21.6	NR	NR	0 - 14000
Davis	2005	1.4 - 49	108 - 133	132 - 204	197 - 249	0.04 - 0.56	1.2 - 11.1	0.19 - 11.2	1.2 - 3.2	0.8 - 19	32 - 00

ATC Advanced Technology Consultants

ww.advtechconsultants.com

Literature Reporting Core-Length of Shear-Coaxial Jets Correlations

Table 1. Summary of published operating conditions, geometries, measurement techniques, and proposed equations from the literature, measuring or correlating core length for shear-coaxial jets. (continued)

REF	Author	Diagnostic	Quantity Measured	Equation
6	Forstall & Shapiro	Pitot tube, Sampling Tube	Potential Core	$L/D_1 = 4 + 12V_r$
7	Chigier & Beer	Pitot tube	Potential Core	NR
8	Champagne & Wygnanski	Hot wire anemo- meter	Inner Core	NR
9	Au and Ko	Hot wire anemo- meter	Potential Core	$L/D_1 = 9.9/V_r$
10	Eroglu et al.	Back-lit still	Liquid Intact Length	$L/D_{\rm i} = 0.66 W e^{-0.4} R e^{0.6}$
11	Woodward	x-ray Radio- graphy	Intact Liquid Core Length	$L/D_1 = 0.0095 \left(\frac{\rho_o}{\rho_i}\right)^{-0.36} W e^{-0.22/H} R e^{0.68}$
15	Villermaux et al. ^g	Hot film anemo- meter	Potential Core / Cone	$L/D_1 = 7/V_r$
12	Englebert et al.	Back-lit high-speed 16mm film	Breakup Length	$\frac{L/D_1 = 40 W e^{-0.27}}{\frac{2L}{D_3 - D_2} = 10.6 M_R^{-0.3} = 13.7 E_R^{-0.2}}$
13	Carreau et al.	Fiber optic Probe	Breakup Length, Potential Cone Length	$L/D_1 = 0.0012 \left(\frac{\rho_o}{\rho_i}\right)^{-0.32} We^{-0.33} Re^{0.55}$
16	Rehab et al. ^g	Hot film anemo- meter, Pitot tube, LIF image	Potential Core	$\begin{split} L/D_1 &= 6/V_r; \ L/D_1 = 8/V \\ L/D_1 &= 0.5 \bigg(\frac{1}{(C\alpha V_r)^2} - 1 \bigg)^{1/2} \approx \frac{1}{2C\alpha V_r} \end{split}$
17	Rehab et al. ^g	Hot-film anemo- meter	Potential Cone	$L/D_1 = c/V_r; 6 < c < 8$
18	Villermaux ^{g,h}	h	Potential Cone, Liquid intact length	$L/D_1 = 6/M^{1/2}$

Table 1. Summary of published operating conditions, geometries, measurement techniques, and proposed equations from the literature, measuring or correlating core length for shear-coaxial jets. (continued)

REF	Author	Diagnostic	Quantity Measured	Equation
19	Lasheras et al. ^g	Photo- graph	Liquid intact length	$L/D_1 = \left(\frac{1}{4(C\alpha)^2 M} - \frac{1}{4}\right)^{1/2} \approx \frac{6}{M^{1/2}}$
20	Lasheras & Hopfinger ^{gi}	i	i	$L/D_{1} = \frac{1}{2cM^{2/3}} \left(\frac{\sigma}{\sigma_{l}U_{l}}\right)^{1/3}$ $L/D_{1} \approx \frac{6}{M^{1/2}} \left(\left 1 - \frac{U_{l}}{U_{o}}\right \right)^{-1}$ $L/D_{1} \approx \frac{6}{M^{1/2}} \frac{1}{\left(1 - \frac{B\sigma}{\sigma_{o}}U_{o}}\right)^{0.5}}$
21	Favre-Marinet & Schettini	Aspirating Probe w/ hot-wire	Potential Core	$L/D_{\rm l} \propto M^{-0.5}$
14	Porcheron et al.	Fiber optic Probe	Liquid Core	$L/D_{\rm l} = 2.85 \left(\frac{\rho_o}{\rho_{\rm i}}\right)^{-0.38} Z^{0.34} M^{-0.13}$
This work	Davis	Shadow- graph	Dark Core	$L/D_1 \approx rac{12}{M^{1/2}}$ $L/D_1 pprox rac{25}{M^{0/2}}$

Table 1. Notes

NR = not reported

NA = not applicable

NC = not clear from report

Amb. = ambient

* assumed from the context, but not directly reported

^a Ambient temperature assumed from the context of discussion, but not specifically stated in report.

^b reported as approximately 10⁵

- ^d The dimensions of the injector and the temperatures were not given in the paper, but were given in the paper by Porcheron et al.¹⁴
- ^e This number is the diameter ratio squared, which is approximately the area ratio for a very thin lip injector. The only dimensional information given was the diameter ratios (1.35, 1.37, and 2.29 mm) and the lip thickness (D2-D1)/2 of 0.3 mm.
- $^{\rm f}$ A *Re* based on momentum conservation reported and defined as

 $Re = \rho_0 U_0 D_3 / \infty^* (1 - (D_1 / D_3))^{0.5}$ ranged from $10^4 - 10^5$.

^g These papers are from the same collaboration / research group over several years.

^h This paper was an analysis paper that presented a different equation based on the data from the same group of researchers^{16,17}

ⁱ This paper was a review paper encompassing the work from this same collaboration of researchers, as well as others.

^j Unable to make measurements from images, and therefore not compared quantitatively to theory for core length.

Core Length of Coaxial Jets

- Subcritical P; High Outer T (*)
- Nearcritical P; High Outer T (*)
- △ Supercritical P; High Outer T (*)
- Subcritical P; Low Outer T (*)
- Nearcritical P; Low Outer T (*)
- □ Eroglu et al. Re=1456
- Eroglu et al. Re=4370
- × Eroglu et al. Re=9328
- ▼ Favre-Marinet DR=0.138 Air
- Favre-Marinet DR=0.655 Air
- Favre-Marinet DR=0.138 He
- Favre-Marinet DR=0.028 He
- **•** Rehab et al. D3/D1 = 1.37
- Rehab et al. D3/D1 = 2.29
- + Au and Ko
- Englebert et al.
- * Woodward KI(aq) N2
- Woodward KI(aq) He

Core Length of Coaxial Jets

- M < 1 core length of shear coaxial jet behaves like that of a single round jet.
- Core length scales with the square root of density ratio according to the equation of Chehroudi and Bracco, 1985 developed for SINGLE JETS.
 - Davis, D. W. and Chehroudi, B., 2006. Measurements in an Acoustically-Driven Coaxial Jet under Supercritical Conditions, AIAA J. of Propulsion and Power, Vol. 23, No. 2, March-April, pp. 364-374.
 - Chehroudi, B., Chen, S. H., Bracco, F. V., and Onuma, Y., 1985. On the Intact Core of Full-Cone Sprays, Society of Automotive Engineers, 1985 Congress and Exposition, SAE Transaction Paper 850126, February 25-March 1. Also, 1985 Arch. T. Colwell Merit Award.

Spreading rate of the shear layer for single and coaxial jets

Outer jet spreading angle fairly constant with a mean value of 0.19

1.Liu T., Zong, N., Yang, V., "Dynamics of Shear-Coaxial Cryogenic Nitrogen Jets with Acoustic Excitation under Supercritical Conditions", AIAA 2006-759.

Different x-axis groups data from all the pressure regimes

CFD results from Liu et al.

u (m/s):

	case 1	case 2	case 3	case 4			
P (MPa)	4.94	10	4.94	10			
T_{chm} (K)	233	233	233	233			
$T_f(\mathbf{K})$	191	191	191	191			
$T_o(\mathbf{K})$	132	132	132	132			
$\rho_f (kg/m^3)$	98.8	217.2	98.8	217.2			
$\rho_o (\text{kg/m}^3)$	404.0	555.4	404.0	555.4			
$u_f(m/s)$	120	120	65	95			
u _o (m/s)	32	32	32	32			
u_f / u_o	3.75	3.75	2.03	2.97			
(pu) _f / (pu) _o	0.92	1.47	0.50	1.16			
$(\rho u^2)_f / (\rho u^2)_o$	3.44	5.50	1.01	3.45			
\dot{m}_f / \dot{m}_o	11.9	19.0	6.4	15.0			
$a_f(m/s)$	279.6	302.2	279.6	302.2			
a, (m/s)	230.9	441.2	230.9	441.2			
M_f	0.43	0.40	0.23	0.31			
M _o	0.14	0.08	0.14	0.08			
Ref	3.3E5	5.8E5	1.8E5	4.6E5			
Reo	1.3E5	1.0E5	1.3E5	1.0E5			
	Re based on R_i and R_o						

-10 10 30 50 70 90 110

Table 1 Simulation conditions for analysis of shearcoaxial cryogenic nitrogen mixing process.

1.Liu T., Zong, N., Yang, V., "Dynamics of Shear-Coaxial Cryogenic Nitrogen Jets with Acoustic Excitation under Supercritical Conditions", AIAA 2006-759.

Coaxial Jet (acoustic interaction)

Subcritical (Pr=0.63)

Frequency: 2700 Hz Chamber temp: 300 K

Effects of acoustic waves on a coaxial injector under subcritical condition and at core flowrate of 300 mg/s and three different coflow rates of 5, 188, 350 mg/s.

- As co-flow rate is increased, reduction of the jet diameter even at the injector exit plane is observed
- The reduction of the visual jet diameter at the exit plane is due to the warmer GN2 co-flow, affecting the near-wall liquid nitrogen thermodynamic states inside the inner tube which guides the LN2 jet.
- One sees a simultaneous fuzziness of the jet boundary covered with a cushion layer of vaporized (lower density) and cold nitrogen.
- Measurements of λ_{Sub} agrees with a calculation using the core jet velocity and the acoustic waves oscillation period

Coaxial Injector

ATC Advanced Technology Consultants

Supercritical (P_r=1.43)

Frequency: 2700 Hz Chamber temp: 300 K

Effects of acoustic waves on a coaxial injector under supercritical condition and at core flowrate of 300 mg/s and three different coflow rates of 5, 188, 350 mg/s.

- Increase in the coflow rate alone tends to slightly narrow the jet with no other distinct visual effects
- Effects of the acoustic waves are, not only to increase the initial jet angle, but to again impose a sinusoidal shape to the jet

• $\lambda_{Sub} > \lambda_{Super}$:As the penetration rate of the newly injected fluid is reduced under higher chamber pressures (supercritical), the wavelength should decrease, as seen in the figures

Coaxial Jet Subcritical Pressure

Π

2

4

6

8

10

12

- Movie shows transition from • when acoustic field is OFF to ON
- Acoustic driver frequency at • 2.98 kHz
- Velocity Ratio = 9.1 •
- Chamber Pressure = 1.5 MPa •
- Momentum Ratio = 3.2•
- Framing rate 18.00 kHz •

Davis, D. W. and Chehroudi, B., 2006. Measurements in an 1. Acoustically-Driven Coaxial Jet under Supercritical mm Conditions, AIAA J. of Propulsion and Power, Vol. 23, No. 2, March-April, pp. 364-374.

PhD Thesis work by D. Davis at AFRL Supervised by B. 2. Chehroudi

Coaxial Jet Supercritical Pressure

Ω

2

4

6

8

10

12

- Movie shows transition from • when acoustic field is OFF to ON
- Acoustic driver frequency at • 2.98 kHz
- Velocity Ratio = 4.3 •
- Chamber Pressure = 4.9 MPa •
- Momentum Ratio = 5.1•
- Framing rate 18.00 kHz •

Davis, D. W. and Chehroudi, B., 2006. Measurements in an 1. Acoustically-Driven Coaxial Jet under Supercritical mm Conditions, AIAA J. of Propulsion and Power, Vol. 23, No. 2, March-April, pp. 364-374.

PhD Thesis work by D. Davis at AFRL Supervised by B. 2. Chehroudi

Mean Dark-Core Length vs. Velocity Ratio (VR)

- As VR increases, L/D (normalized mean dark-core length) decreases and approaches a constant
- Mean Dark-core length becomes shorter when acoustic driver is turned ON

VR: Outer-to-Inner jet Velocity Ratio

1. Davis, D. W. and Chehroudi, B., 2006. Measurements in an Acoustically-Driven Coaxial Jet under Supercritical Conditions, AIAA J. of Propulsion and Power, Vol. 23, No. 2, March-April, pp. 364-374.

2. PhD Thesis work by D. Davis at AFRL Supervised by B. Chehroudi

RMS of Dark-Core Length vs. Velocity Ratio (VR) vtechconsultants.con

 First time the RMS of core length reported

ATC Advanced

Technology Consultants

- Intuitively, RMS of dark-core length fluctuations relates in some form to *mixture ratio* variations
- High VR creates lowest RMS values (implications for combustion instability)

Inherent insensitivity (stability) of the jet at high VR

VR: Outer-to-Inner jet **Velocity Ratio** RMS: Root-mean- square of core length fluctuations

Davis, D. W. and Chehroudi, B., 2006. Measurements in an Acoustically-Driven Coaxial Jet under Supercritical Conditions, AIAA J. of Propulsion and 1. Power, Vol. 23, No. 2, March-April, pp. 364-374.

PhD Thesis work by D. Davis at AFRL Supervised by B. Chehroudi 2.

Schematic of the two acoustic sources at 0 and 180 degrees

Left Acoustic Driver

Phantom camera

Right Acoustic Driver

Different phase angles between the two acoustic sources

FORCE RESEARCH LABORA

Pchamber =1.5 MPa, MR=2.6, VR=7.6

Combustion Instability in Liquid Rocket Engines

A Unified Injector Sensitivity Theory

B. Chehroudi, PhD

Combustion Instability

Viewing Direction

- The LOX core was found to decrease in length during a combustion instability event
- LOX core large scale sinusoidal structure

Heidmann, NASA TN D-2725, 1965 NASA Lewis Film C-226, 1965

Mechanism of Acoustic Combustion Instability (CI) in Liquid Rocket Engines (LRE)

3.3 Mechanisms in LOX/HC Engines

• Later developments at Aerojet and Penn State led to correlations with the parameter injector orifice diameter/injection velocity (D_j/V_j) to identify the peak injection response.

• These results are related to the dynamics of injectors but there is no associated modeling.

In LOX/H2 Engines (*Coaxial injector*; RL-10, J-2, J-2S; SSME). Conditions under which CI occurred more commonly (or inevitably):

- Lower velocity ratio (VR) V_{H2}/V_{LOX}
- Sufficiently low temperature of injected hydrogen (Temp Ramping)
- Less recessed oxidizer tubes
- Reduced injector pressure drop
- True mechanism remains obscure

In LOX/HC Engines (Impinging jets injector; mostly from F-1)

- Sensitivity of jets and formation of spray fans to velocity fluctuations parallel to the injector face
- Hewitt correlation suggests certain injector parameters (d/V)
- Others (resurge, etc.)

Chehroudi, B. 2009. A Unified Approach on Combustion Instability in Cryogenic Liquid Rockets, 47th AIAA Aerospace Sciences Meeting, AIAA-2009-237, Orlando, Florida, 5-8 January

From Prof. F. Culick, CalTech

- Indication of intrinsic sensitivity of the injector

Iter-to-inner jet velocity ratio (In Engine: V_{H2}/ V_{LOX})

- 2. RMS of the core length variations is much higher at subcritical chamber pressure at all velocity ratios
 - Intrinsic (higher) sensitivity at subcritical (see also next slide for consistent result in fired engine)

Lower RMS at high velocity ratio offered a possible explanation for the enhanced stability observed in LRE (at high V_{H2}/V_{LOX})

Temperature ramping (for LRE stability rating) was linked to its impact on the velocity ratio and hence core length RMS offered an explanation

Chehroudi, B. 2009. A Unified Approach on Combustion Instability in Cryogenic Liquid Rockets, 47th AIAA Aerospace Sciences Meeting, AIAA-2009-237, Orlando, Florida, 5-8 January

Dark Core Characteristics is the Key: Intrinsic Sensitivity of Impinging Jet Injector at Low d/V values

ATC

Advanced Technology

Consultants

Chehroudi, B. 2009. A Unified Approach on Combustion Instability in Cryogenic Liquid Rockets, 47th AIAA Aerospace Sciences Meeting, AIAA-2009-237, Orlando, Florida, 5-8 January

Figure 9. Shows *sheet breakup length* as a function of instability parameter at three different chamber pressures. Much higher sensitivity of the *sheet breakup length* is seen with chamber pressure at low dn/V (= d_0/U_j , in the original article) values. Anderson et al. [13].

d_o/U_i x 10⁵, s

5

Impinging Jets:

- PennState work in non-reacting setup (Anderson et al.)
 - Higher sensitivity at lower values of d/V
 - Higher sensitivity to chamber pressure at low values of d/V
 - Intrinsic stability of the impinging jet injector at low d/V values (for more details see paper)

= 101 kPa

P = 527 kPa

P = 1000 kPa

 $d_0 = 0.508 \text{ mm}$

10

15

 $2\theta = 60^{\circ}$

A Unified Injector Sensitivity Theory

ATC

Advanced Technology Consultants

Key Components of the Unified Theory:

- **1.**All share a "dark core" with Mean & RMS, suggesting a unified approach for intrinsic sensitivity of the jet to its environment
- 2.When an important dynamic feature (darkcore or breakup zone) of an injector design becomes sufficiently sensitive to thermofluid parameters of its environment, it is highly likely that this could strengthen the feedback link thought to be critical in the amplification process and hence move the dynamic system into an unstable operating regime.

3. See schematic diagram of <u>hypothesis</u>

Chehroudi, B. 2009. A Unified Approach on Combustion Instability in Cryogenic Liquid Rockets, 47th AIAA Aerospace Sciences Meeting, AIAA-2009-237, Orlando, Elocida, 5-8 January

ATC Supporting Data and Offered Explanations by AFR Advanced the Unified Injector Sensitivity Theory Technology Consultants 100 Dripping SINGLE JET Length Lt/D1 subcritical F Smooth Jet Region **Dark-core** (Breakup) Transition Flow Region length Wavy Jet Region Hiroyasu Core Incomplete Spray Dark Complete Spray **IMPINGING JET COAXIAL JET** Cavitation & Hydraulic Curved I Atomizatio Flip (Hiroyasu) 0.1 1.0 10.0 100.0 *&?* 102 Million nd induced LRE Stability rating **Outer to Inner Jet Momentum** Hewitt Stability plot for LOL Flux Ratio (MR) CERCIMIES & • Temp Ramping

Dark Core length

measurements by DLR and Chehroudi

(AFRL)

Unified

Injector

Sensitivity

Theory Dynamics of

the Dark

Core length

impinging (d/V)

Comparable pre-impingement

distance and Dark-core

length

Observed Instability at high

engine designs (J. Fang)

(Santoro' Group)

sensitivity at lower d/V

(Anderson et al.)

Prediction for impinging jet

rockets using the

THEORY

Impinging jet increasing

chamber pressures for some

Break

(Dark, Intact, Potential Core Length)(Nozzle Diameter)

0.01

Injection Velocity

· V

Dark-Core Least

132 44 637

1 (Ile 600)

gan jet (Temperat

1.00

097 Al-

Spray Intact Core (UpperLower bounds) (Chebronfi et al. [12])

0.10

Chamber-to-Injectant Density Ratio

Figure 10. Trend of the Curved Dark Core Length vs.

Chehroudi, B. 2009. A Unified Approach on Combustion Instability in Cryogenic Liquid Rockets, 47th AIAA Aerospace Sciences Meeting, AIAA-2009-237, Orlando, Florida, 5-8 January

MANY EXPERIMENTALLY OBSERVED TRENDS ARE CONSISTENT WITH THE THEORY

A Unified Approach on Combustion Instability in Cryogenic Liquid Rocket Engines (Bruce

Velocity Ratio

DLR work in single-element

Rocket

Stable at near- & super-critical

Unstable at subcritical

Physical

interpretation of

RMS and

connection to

instability (Culick)

Conclusions

- For the first time, it was shown, quantitatively, that supercritical single jets grow similar to the incompressible variable-density jets
- 2*(FWHM) of radial profiles measured by Raman is equivalent to Visual jet thickness
- Fractal dimension of the jet at subcritical agrees with those of liquid jets at wind-induced atomization regimes and for supercritical jets is in agreement with values reported for gaseous jets
- A phenomenological model equation is proposed that mimics the experimental data both at subcritical and supercritical conditions
- Dark-core length (for coaxial jets) as a function of outer-to-inner jet momentum flux ratio for subcritical behaves like two-phase flows and for the supercritical like single-phase flows (dual character)
- Interaction of external acoustic field with single and coaxial jets were investigated when jets are located at the velocity antinode (pressure node)
- A Unified Injector Sensitivity Theory is proposed
- Unique systematic approach based on dynamic behavior of the "Jet-core length" characterized for single jets (showerhead), coaxial jets, and impinging jets
- This theory, for the first time, attempts to propose & unify the underlying mechanism responsible for the sensitivity of different liquid rocket injectors to acoustic field established inside the rocket thrust chamber
- Theory is able to offer plausible explanations for combustion instability observations in liquid rocket engines under sub- and super-critical conditions
- Theory is consistent with the examined (so far) existing body of data from cold to fired single-element tests, as well as able to explain engine data such as Hewitt Stability Correlation (see paper for details)

The End